Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de IA detecta diabetes mediante radiografías de tórax

Por el equipo editorial de MedImaging en español
Actualizado el 17 Aug 2023
Print article
Imagen: Las radiografías de tórax podrían proporcionar una alternativa 'oportunista' a las pruebas universales de diabetes (Fotografía cortesía de Freepik)
Imagen: Las radiografías de tórax podrían proporcionar una alternativa 'oportunista' a las pruebas universales de diabetes (Fotografía cortesía de Freepik)

Las pautas actuales recomiendan evaluar a las personas de entre 35 y 70 años con sobrepeso u obesidad, según lo indica su Índice de Masa Corporal (IMC), para detectar diabetes tipo 2. No obstante, numerosos estudios indican que este método no logra identificar un número significativo de casos, especialmente entre las minorías raciales y étnicas para quienes el IMC es un indicador menos confiable del riesgo de diabetes. Los pacientes con diabetes no diagnosticada tienen un riesgo mucho mayor de desarrollar complicaciones, incluido el daño irreversible de los órganos e incluso la muerte. Ahora, un nuevo modelo de inteligencia artificial (IA) ha demostrado que las imágenes de rayos X tomadas durante la atención médica de rutina pueden revelar signos de diabetes en personas que no cumplen con los criterios de mayor riesgo. Esto podría ayudar a los médicos a detectar la enfermedad antes, previniendo complicaciones.

Utilizando el aprendizaje profundo en imágenes y datos de registros de salud electrónicos, un equipo multiinstitucional desarrolló un modelo que marcó con éxito un riesgo de diabetes elevado en un análisis retrospectivo, a menudo años antes de que se diagnosticara la enfermedad. El modelo de IA se entrenó en más de 270.000 imágenes de rayos X de alrededor de 160.000 pacientes, y el aprendizaje profundo identificó las características de la imagen que mejor predijeron un futuro diagnóstico de diabetes. Dado que las radiografías de tórax no suelen utilizarse para la detección de la diabetes, los investigadores utilizaron técnicas de IA explicables para comprender el razonamiento detrás de las predicciones del modelo. Los métodos identificaron la ubicación del tejido graso como crucial para determinar el riesgo, lo que se alinea con investigaciones médicas recientes que relacionan la grasa visceral en la parte superior del cuerpo y el abdomen con la diabetes tipo 2, la resistencia a la insulina, la hipertensión y otras afecciones.

Debido a la naturaleza innovadora del enfoque y sus notables resultados, el equipo inicial reclutó a investigadores de la Universidad de Emory (Atlanta, GA, EUA) para validar externamente el modelo. Cuando se aplicó a un grupo independiente de casi 10.000 pacientes, el modelo superó a un modelo básico basado en datos clínicos sin imágenes en la predicción del riesgo de diabetes. En ciertos casos, la radiografía de tórax señaló un alto riesgo de diabetes hasta tres años antes de un eventual diagnóstico. El modelo también proporciona una puntuación de riesgo numérica que podría ayudar a los médicos a personalizar los planes de tratamiento para los pacientes.

Anualmente, se toman millones de radiografías de tórax debido a dolor en el pecho, dificultad para respirar, lesión o como procedimiento prequirúrgico. Si bien los radiólogos no buscan específicamente la diabetes cuando examinan estas radiografías, dichas imágenes se convierte en parte de la história médica del paciente y podrían analizarse más adelante para detectar diabetes u otras afecciones. Los investigadores ahora planean validar aún más el modelo e integrarlo en los sistemas de registros de salud electrónicos para alertar a los médicos para que realicen pruebas de detección de diabetes tradicionales para pacientes identificados como de alto riesgo según los hallazgos en las radiografías. Su próximo enfoque será investigar la eficacia de las radiografías de tórax para diagnosticar otras afecciones, como enfermedades vasculares, insuficiencia cardíaca congestiva y enfermedad pulmonar obstructiva crónica.

“Las radiografías de tórax brindan una alternativa 'oportunista' a las pruebas universales de diabetes”, dijo Judy Wawira Gichoya, MD, profesora asistente de radiología y ciencias de la imagen e investigadora principal de Emory. "Esta es una aplicación potencial emocionante de la IA para extraer datos de las pruebas utilizadas por otras razones y tener un impacto positivo en la atención del paciente".

Enlaces relacionados:
Universidad Emory

New
Proveedor de oro
Electrode Solution and Skin Prep
Signaspray
Proveedor de oro
Ultrasound System
FUTUS LE
New
Web-Based DICOM Viewer
iQ-4VIEW
New
Forensic Imaging System
EXERO-DR

Print article
Radcal

Canales

RM

ver canal
Imagen: Los investigadores están utilizando radioterapia guiada por resonancia magnética que combina resonancia magnética diaria con radioterapia (Fotografía cortesía de Sylvester)

Técnica de IA rastrea automáticamente tumores en grandes conjuntos de datos de resonancia magnética para guiar tratamiento del glioblastoma en tiempo real

El tratamiento del glioblastoma, un cáncer cerebral agresivo y prevalente, implica el uso de radioterapia guiada por imágenes de tomografía computarizada. Si bien este método... Más

Ultrasonido

ver canal
Imagen: El nuevo parche de ultrasonido puede medir qué tan llena está la vejiga (Fotografía cortesía del MIT)

Parche de ultrasonido diseñado para monitorear la salud de la vejiga y riñones podría permitir diagnóstico más temprano del cáncer

La disfunción de la vejiga y los problemas de salud relacionados afectan a millones de personas en todo el mundo. Monitorear el volumen de la vejiga es crucial para evaluar la salud de los riñones.... Más

Medicina Nuclear

ver canal
Imagen: Un novedoso radiotrazador PET facilita la detección temprana y no invasiva de la EII (Fotografía cortesía de Karmanos)

Nuevo radiotrazador PET ayuda a detectar de forma temprana y no invasiva la enfermedad inflamatoria intestinal

La enfermedad inflamatoria intestinal (EII), que incluye la enfermedad de Crohn y la colitis ulcerosa, es una afección inflamatoria del tracto gastrointestinal que padecen aproximadamente a siete... Más

Imaginología General

ver canal
Imagen: La inteligencia artificial predice las respuestas a la terapia para el cáncer de ovario (Fotografía cortesía de 123RF)

Modelo de IA combina pruebas de sangre y análisis de TC para predecir respuesta a terapia en pacientes con cáncer de ovario

El cáncer de ovario afecta anualmente a miles de mujeres y muchos diagnósticos se producen en etapas avanzadas debido a síntomas tempranos sutiles. El carcinoma de ovario seroso de... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: Los asistentes pueden descubrir productos y tecnología innovadores en las Exhibiciones Técnicas de RSNA 2023 (Fotografía cortesía de RSNA)

Exposiciones técnicas RSNA 2023 ofrecerá innovaciones en IA, impresión 3D y más

La 109.ª Asamblea Científica y Reunión Anual de la Sociedad Radiológica de América del Norte (RSNA, Oak Brook, IL, EUA), que se celebrará en Chicago del 26 al 30... Más
Copyright © 2000-2023 Globetech Media. All rights reserved.