Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Sistema de IA confirma posición del tubo traqueal en radiografías de tórax

Por el equipo editorial de MedImaging en español
Actualizado el 26 Sep 2023
Imagen: El sistema de IA identifica el tubo endotraqueal colocado incorrectamente en las radiografías de tórax (Fotografía cortesía de Lunit)
Imagen: El sistema de IA identifica el tubo endotraqueal colocado incorrectamente en las radiografías de tórax (Fotografía cortesía de Lunit)

La evaluación oportuna y precisa de las radiografías de tórax para verificar la colocación de los tubos endotraqueales (TET) es crucial para realizar ajustes inmediatos si es necesario. Se ha descubierto que un sistema de inteligencia artificial (IA) impulsado por aprendizaje profundo (DL) es eficaz para detectar TET colocados incorrectamente a partir de radiografías de tórax tomadas inmediatamente después de insertar el TET o después del ingreso a la UCI.

Investigadores del Hospital Universitario Nacional de Seúl (Seúl, Corea) realizaron un estudio para evaluar el desempeño de un sistema comercial de inteligencia artificial basado en DL de Lunit (Seúl, Corea) para determinar la presencia y ubicación de TET en radiografías de tórax. Examinaron tres muestras separadas de pacientes de dos centros médicos diferentes. La primera muestra estuvo compuesta por 539 radiografías de tórax de 505 pacientes (293 hombres y 212 mujeres, edad promedio 63) tomadas inmediatamente después de la colocación del TET entre enero y marzo de 2020 en la institución A. La segunda muestra involucró 637 radiografías de 304 pacientes de la UCI ( 158 hombres y 147 mujeres, edad promedio 63) en la misma institución, tomadas del 1 al 3 de enero de 2020. La tercera muestra estuvo compuesta por 546 radiografías de 83 pacientes de UCI (54 hombres y 29 mujeres, edad promedio 70) en la institución B, tomadas del 1 al 20 de enero de 2020.

El sistema de IA comercial basado en DL de Lunit se utilizó para detectar la presencia del TET y medir la distancia desde la punta del TET hasta la carina (TCD). Los lectores humanos establecen el estándar para la colocación adecuada del TET como una TCD de entre 3 cm y 7 cm. La colocación de un TET "crítico" se clasificó por separado como una punta del TET ubicada debajo de la carina o una TCD igual o menor a 1 cm. Sorprendentemente, el sistema de IA mostró un rango de sensibilidad del 99,2 al 100 % para identificar la presencia de TET y un rango de especificidad del 94,5 al 98,7 % en las tres muestras de pacientes de las dos instituciones. Para la colocación inadecuada del TET, mostró una sensibilidad del 72,5 al 83,7 % y una especificidad del 92,0 al 100 %. Para detectar la posición crítica del TET, el sistema logró una sensibilidad del 100 % en todas las muestras y un rango de especificidad del 96,7 al 100 %.

"La identificación automatizada por IA de la colocación inadecuada del TET en la radiografía de tórax puede permitir un reposicionamiento más temprano y, por lo tanto, reducir las complicaciones", afirmó Eui Jin Hwang, MD, PhD, del departamento de radiología del Hospital Universitario Nacional de Seúl.

Enlaces relacionados:
Lunit  
Hospital Universitario Nacional de Seúl

Digital Radiographic System
OMNERA 300M
Breast Localization System
MAMMOREP LOOP
Ultrasonic Pocket Doppler
SD1
Computed Tomography System
Aquilion ONE / INSIGHT Edition

Canales

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: la herramienta de diagnóstico podría mejorar las decisiones de diagnóstico y tratamiento para pacientes con infecciones pulmonares crónicas (foto cortesía de SNMMI)

Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar

Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más

Imaginología General

ver canal
Imagen: un modelo de aprendizaje profundo basado en parches con un conjunto de datos de entrenamiento limitado para la segmentación de tumores hepáticos en TC con contraste (Yang et al. (2025), IEEE Access, 10.1109/Access.2025.3570728)

Modelo de IA segmenta con precisión tumores hepáticos a partir de tomografías computarizadas

El cáncer de hígado es el sexto tipo de cáncer más común en el mundo y una de las principales causas de muerte por cáncer. La segmentación precisa de los tumores hepáticos es crucial para el diagnóstico... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.