Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Nueva herramienta de IA detecta y caracteriza con precisión microcalcificaciones en mamografía

Por el equipo editorial de MedImaging en español
Actualizado el 12 Jan 2024
Print article
Imagen: El modelado de IA detecta y clasifica las microcalcificaciones de mama (Fotografía cortesía de 123RF)
Imagen: El modelado de IA detecta y clasifica las microcalcificaciones de mama (Fotografía cortesía de 123RF)

La detección del cáncer de mama mediante mamografía es crucial para la detección temprana; sin embargo, la demanda de servicios de mamografía supera la capacidad de los radiólogos. La inteligencia artificial (IA) puede ayudar a evaluar las microcalcificaciones en las mamografías. Un equipo de investigadores ha desarrollado y probado un modelo de IA que puede detectar y caracterizar con precisión microcalcificaciones en mamografías.

En la investigación realizada en el Instituto Europeo de Oncología IEO IRCCS (Milán, Italia), tres radiólogos expertos anotaron un conjunto de datos de 1.000 pacientes y 1.986 mamografías utilizando datos reales basados en histología. El conjunto de datos se dividió para entrenamiento, validación y prueba. Del total, 389 grupos de microcalcificaciones se consideraron malignos y 611 benignos. Luego, el equipo entrenó y evaluó tres redes neuronales (AlexNet, ResNet18 y ResNet34) utilizando métricas específicas que incluyen el área bajo la curva (AUC) de las características operativas del receptor, la sensibilidad y la especificidad.

El equipo evaluó la capacidad de las redes neuronales para detectar y clasificar microcalcificaciones y descubrió que AlexNet ofrecía el mejor desempeño general entre las tres redes neuronales. Los investigadores también encontraron que AlexNet tenía un valor predictivo negativo de las tres redes en detección (0,94) y clasificación (0,88). El estudio destaca la importancia de desarrollar modelos confiables de aprendizaje profundo que posiblemente se apliquen a la detección del cáncer de mama. Basándose en sus hallazgos, el equipo de investigación ha sugerido que estos modelos ofrecen el potencial de mejorar el trabajo de los radiólogos de mama, particularmente en los programas de detección del cáncer de mama.

Enlaces relacionados:
IEO IRCCS

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Full Field Digital Mammography Phantom
Mammo FFDM Phantom
Compact C-Arm
Arcovis DRF-C S21
New
Portable X-ray Unit
AJEX130HN

Print article

Canales

RM

ver canal
Imagen:  Un brazalete portátil similar a una joya reduce el ruido de fondo para aumentar drásticamente la potencia de la resonancia magnética (foto cortesía de la Universidad de Boston)

Los metamateriales podrían aumentar la velocidad y precisión de las resonancias magnéticas

La resonancia magnética (RM) ha revolucionado la forma en que los médicos diagnostican y planifican el tratamiento de diversas enfermedades, al permitir la visualización no invasiva... Más

Ultrasonido

ver canal
Imagen: El dispositivo Diadem está diseñado para tratar dolor crónico y la depresión (foto cortesía de la Universidad de Utah)

Dispositivo de ultrasonido estimula no invasivamente regiones profundas del cerebro para tratar el dolor crónico

El dolor sirve como una advertencia biológica vital, pero en muchas enfermedades se distorsiona. Las personas que sufren dolor crónico a menudo enfrentan señales de dolor persistentes... Más

Medicina Nuclear

ver canal
Imagen: PET/ULD CT con LAFOV [18F]MFBG (arriba) y [123I] MIBG gammagrafía con [123I]MIBG con imágenes SPECT/LDCT (abajo) de una niña de 7 semanas con neuroblastoma (foto cortesía del Journal of Nuclear Medicine)

Nueva técnica PET/CT detecta con precisión el neuroblastoma en niños con tiempo de escaneo corto y sin anestesia

El neuroblastoma, el tumor sólido extracraneal más común en niños, tiene una tasa de supervivencia general del 70 %. Tradicionalmente, el procedimiento de escaneo SPECT/CT con... Más

Imaginología General

ver canal
Imagen: Se espera que el dispositivo de neuroimagen vertical amplíe la capacidad de investigar el cerebro en movimiento (foto cortesía de Davidson Chan/WVU)

Dispositivo de neuroimagen permite escaneos cerebrales por PET mientras se camina

Los escáneres tradicionales de tomografía por emisión de positrones (PET) requieren que los pacientes permanezcan quietos durante la toma de imágenes. Esto representa un desafío... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: SONASes un dispositivo de ultrasonido portátil alimentado por batería para la evaluación no invasiva de la perfusión cerebral (foto cortesía de BURL Concepts)

Una colaboración innovadora mejorará la detección del accidente cerebrovascular isquémico

La evaluación del ictus isquémico se ha visto obstaculizada durante mucho tiempo por las limitaciones de las técnicas de diagnóstico por imagen tradicionales, como la tomografía... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.