Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.
07 dic 2020 - 11 dic 2020
09 dic 2020 - 18 dic 2020
Virtual Venue

Combinación de resonancia magnética e IA pueden identificar instantáneamente la distonía focal

Por el equipo editorial de MedImaging en español
Actualizado el 14 Oct 2020
Print article
Imagen: Comparación de las imágenes de resonancia magnética procesadas por DystoniaNet (Fotografía cortesía del MEEI)
Imagen: Comparación de las imágenes de resonancia magnética procesadas por DystoniaNet (Fotografía cortesía del MEEI)
De acuerdo con un estudio nuevo, la conjunción de la resonancia magnética (RM) y la inteligencia artificial (IA) puede identificar a los pacientes con distonía en menos de un segundo.

La nueva plataforma, llamada DystoniaNet, desarrollada en la Clínica de Ojos y Oídos de Massachusetts (MEEI; Boston, EUA), puede identificar un biomarcador de red neuronal microestructural que permite un diagnóstico objetivo y exacto de la distonía aislada, basado en la fisiopatología del trastorno y la resonancia magnética estructural de las imágenes cerebrales. El algoritmo se desarrolló utilizando las resonancias magnéticas de 612 individuos, incluidos 392 con tres formas de distonía focal aislada (distonía laríngea, distonía cervical y blefaroespasmo) y las de 220 controles sanos.

DystoniaNet identificó con éxito grupos en el cuerpo calloso, las radiaciones talámicas anterior y posterior, el fascículo frontooccipital inferior y las circunvoluciones orbitarias temporal inferior y superior como componentes biomarcadores, regiones que se sabe que contribuyen a la transferencia de información interhemisférica anormal, procesamiento sensoriomotor heteromodal y control ejecutivo de los comandos motores. En total, el biomarcador DystoniaNet AI mostró una exactitud del 98,8% en el diagnóstico de distonía, con una derivación del 3,5% de los casos debido a incertidumbre diagnóstica.

DystoniaNet también superó a los algoritmos de aprendizaje automático poco profundos, mostrando casi un 20% de aumento en el desempeño del diagnóstico de referencia. Es importante destacar que el biomarcador de red neuronal microestructural y su plataforma, DystoniaNet, mostraron una mejora sustancial con respecto al 34% de concordancia actual sobre el diagnóstico de distonía entre los médicos. Además, la decisión diagnóstica de DystoniaNet se calculó en solo 0,36 segundos. El estudio fue publicado el 1 de octubre de 2020 en la revista PNAS.

“Básicamente, aprovechamos los avances realizados en el aprendizaje profundo y diseñamos una arquitectura que podía analizar la resonancia magnética estructural sin procesar y encontrar un biomarcador de distonía que pudiera ayudar con el diagnóstico de este trastorno”, dijo el autor del estudio, Davide Valeriani, PhD. “Adoptamos específicamente un enfoque que se podía traducir fácilmente a la clínica, por lo que utilizamos la resonancia magnética estructural sin procesar. Dado el rendimiento de la plataforma y el tiempo promedio para el diagnóstico, tiene un impacto potencial beneficioso en el campo de los trastornos del movimiento”.

La distonía es un trastorno neurológico de fisiopatología heterogénea, que provoca contracciones musculares involuntarias que dan lugar a movimientos y posturas anormales. Su diagnóstico es notablemente desafiante debido a la ausencia de un biomarcador o prueba de diagnóstico estándar de oro. Esto conduce a una concordancia baja entre los médicos, con hasta un 50% de los casos diagnosticados erróneamente y retrasos en el diagnóstico que se extienden hasta 10 años.

Enlace relacionado:
Clínica de Ojos y Oídos de Massachusetts


Print article
Radcal
Sun Nuclear/Gammex

Canales

Industria

ver canal
Imagen: AI-Rad Companion Chest CT genera automáticamente informes estandarizados, reproducibles y cuantitativos en formato DICOM SC (Fotografía cortesía de Siemens Healthineers).

Software para la TC de tórax basada en IA de Siemens Healthineers recibe aprobación de la FDA de los EUA

La Administración de Medicamentos y Alimentos de los Estados Unidos (FDA) aprobó tres módulos de AI-Rad Companion Chest CT, un asistente de software inteligente de Siemens Healthineers (Erlangen, Alemania)... Más
Copyright © 2000-2020 Globetech Media. All rights reserved.