Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Nuevo modelo de aprendizaje automático señala escaneos cerebrales anormales en tiempo real

Por el equipo editorial de MedImaging en español
Actualizado el 22 Feb 2022
Imagen: El marco de aprendizaje profundo reduce los tiempos de informe para las resonancias magnéticas anormales de la cabeza (Fotografía cortesía del King`s College de Londres)
Imagen: El marco de aprendizaje profundo reduce los tiempos de informe para las resonancias magnéticas anormales de la cabeza (Fotografía cortesía del King`s College de Londres)

Un nuevo modelo de aprendizaje automático puede reducir los tiempos de notificación de exámenes anormales al marcar con precisión las anomalías en el momento de la obtención de imágenes.

Investigadores del King's College de Londres (Londres, Reino Unido) han desarrollado un marco de aprendizaje profundo basado en redes neuronales convolucionales para señalar anomalías clínicamente relevantes en el momento de la obtención de imágenes en resonancias magnéticas de cabeza potenciada en T2 axial de grado hospitalario, rutinarias y mínimamente procesadas. El trabajo fue motivado por retrasos en el informe de escaneos en hospitales. La creciente demanda nacional e internacional de resonancias magnéticas, junto con la escasez de radiólogos, han llevado a un aumento en el tiempo necesario para informar las resonancias magnéticas de la cabeza en los últimos años. Los retrasos provocan el efecto colateral de que lleva más tiempo administrar el tratamiento correcto a los pacientes y, por lo tanto, peores resultados para los pacientes y costos de atención médica inflados.

En un estudio de simulación, los investigadores encontraron que su modelo redujo los tiempos de espera para los informes de pacientes con anomalías en unas dos semanas, de 28 a 14 días y de 9 a 5 días. Los logros actuales están respaldados por un modelo reciente que aborda un problema existente que bloquea los desarrollos generales en la aplicación del aprendizaje profundo a la imagenología: la dificultad de obtener conjuntos de datos grandes, clínicamente representativos y etiquetados con precisión. Si bien es posible acceder a grandes conjuntos de datos de hospitales, los datos generalmente no están etiquetados. El marco de aprendizaje profundo basado en redes neuronales convolucionales utilizado en el estudio actual para señalar anomalías clínicamente relevantes en el momento de la obtención de imágenes no podría haberse desarrollado sin este trabajo anterior, que permitió el etiquetado de conjuntos de datos de resonancia magnética de la cabeza a escala.

En el estudio actual, otro paso adelante hacia la traducción clínica es que los investigadores utilizan resonancias magnéticas cerebrales potenciadas en T2 axiales de grado hospitalario de rutina que se han sometido a poco procesamiento antes del análisis de clasificación. Esto significa que las resonancias magnéticas de la cabeza se pueden usar en la forma en que llegan del escáner, lo que reduce de minutos a segundos el tiempo que de otro modo se dedicaría a procesar las imágenes, pero también permite que se detecten más anomalías en otras áreas capturadas por la resonancia magnética de la cabeza, como enfermedades en el cráneo y alrededor de los ojos y la nariz. La velocidad y cobertura del sistema de detección de anomalías permite aplicaciones en tiempo real.

“Nuestro modelo puede reducir los tiempos de informe para exámenes anormales al marcar con precisión las anomalías en el momento de la obtención de imágenes, lo que permite que los departamentos de radiología prioricen los recursos limitados para informar estos escaneos primero. Esto aceleraría la intervención del equipo clínico de referencia”, dijo el Dr. David Wood, investigador asociado de la Escuela de Ingeniería Biomédica y Ciencias de la Imagen.

“Habiendo creado y validado previamente un conjunto de datos de resonancia magnética de la cabeza etiquetados utilizando una metodología de aprendizaje automático de vanguardia a través de un equipo de científicos de datos y radiólogos del hospital, el mismo equipo ahora ha creado y validado un nuevo modelo de aprendizaje automático que puede clasificar las exploraciones de resonancia magnética de la cabeza para que las exploraciones anormales puede estar al frente de la fila para informar. El beneficio potencial para los pacientes y los sistemas de atención médica es enorme”, agregó el Dr. Thomas Booth, profesor titular de neuroimagen en la Escuela de Ingeniería Biomédica y Ciencias de la Imagen y neurorradiólogo consultor de diagnóstico e intervención en el hospital King's College.

Enlaces relacionados:
King's College de Londres

Ultrasonic Pocket Doppler
SD1
X-Ray Illuminator
X-Ray Viewbox Illuminators
Multi-Use Ultrasound Table
Clinton
New
Medical Radiographic X-Ray Machine
TR30N HF

Canales

Ultrasonido

ver canal
Imagen: el ultrasonido focalizado puede detener el crecimiento de lesiones cerebrales debilitantes (Foto cortesía de Nature Biomedical Engineering; doi.org/10.1038/s41551-025-01390-z)

Nueva técnica sin incisiones detiene el crecimiento de lesiones cerebrales debilitantes

Las malformaciones cavernosas cerebrales (MCC), también conocidas como cavernomas, son agrupaciones anómalas de vasos sanguíneos que pueden formarse en el cerebro, la médula... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

Imaginología General

ver canal
Imagen: El cinturón de TC por ultrasonido podría facilitar el seguimiento de pacientes con afecciones cardíacas y pulmonares (foto cortesía de la Universidad de Bath)

Dispositivo portátil pionero ofrece una alternativa revolucionaria a las tomografías computarizadas

Actualmente, los pacientes con afecciones como insuficiencia cardíaca, neumonía o dificultad respiratoria suelen requerir múltiples procedimientos de diagnóstico por imagen... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.