Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de imágenes de IA detecta trastornos cerebrales a partir de exploraciones de IRMf

Por el equipo editorial de MedImaging en español
Actualizado el 25 Jul 2022
Imagen: Indicadores dinámicos de enfermedades mentales capturados por IA avanzada en imágenes cerebrales (Fotografía cortesía de la Universidad Estatal de Georgia)
Imagen: Indicadores dinámicos de enfermedades mentales capturados por IA avanzada en imágenes cerebrales (Fotografía cortesía de la Universidad Estatal de Georgia)

Una nueva investigación puede conducir al diagnóstico temprano de condiciones devastadoras como la enfermedad de Alzheimer, la esquizofrenia y el autismo, a tiempo para ayudar a prevenir y tratar más fácilmente estos trastornos.

En un nuevo estudio, un equipo de siete científicos de la Universidad Estatal de Georgia (Atlanta, GA, EUA), construyó un sofisticado programa de computadora que pudo analizar cantidades masivas de datos de imágenes cerebrales y descubrir patrones novedosos vinculados a condiciones de salud mental. Los datos de imágenes cerebrales provinieron de escaneos que utilizan imágenes de resonancia magnética funcional (IRMf), que mide la actividad cerebral dinámica mediante la detección de pequeños cambios en el flujo sanguíneo. Este tipo de imagen dinámica es similar a una película, a diferencia de una instantánea como una radiografía o la resonancia magnética estructural más común.

Además, las IRMf, en estas condiciones específicas, son costosas y difíciles de obtener. Sin embargo, utilizando un modelo de inteligencia artificial, se pueden extraer datos de IRMf regulares. Y esos están disponibles en grandes cantidades. El uso de estos grandes conjuntos de datos disponibles pero no relacionados mejoró el rendimiento del modelo en conjuntos de datos específicos más pequeños. Los modelos de IA se entrenaron primero en un conjunto de datos que incluía a más de 10.000 personas para aprender a comprender las imágenes básicas de resonancia magnética funcional y la función cerebral. Luego, los investigadores utilizaron conjuntos de datos de varios sitios de más de 1.200 personas, incluidas aquellas con trastorno del espectro autista, esquizofrenia y enfermedad de Alzheimer.

La tecnología funciona un poco como Facebook, YouTube o Amazon, aprendiendo sobre el comportamiento en línea de un usuario y comenzando a poder predecir el comportamiento futuro, lo que le gusta y lo que no le gusta. El software de la computadora incluso pudo ubicarse en el "momento" en el que los datos de imágenes del cerebro probablemente estaban relacionados con el trastorno mental en cuestión. Para que estos hallazgos sean clínicamente útiles, deberán aplicarse antes de que se manifieste un trastorno.

"Construimos modelos de inteligencia artificial para interpretar las grandes cantidades de información de IRMf", dijo Sergey Plis, profesor asociado de informática y neurociencia en Georgia State y autor principal del estudio. “La visión es que recopilamos un gran conjunto de datos de imágenes, nuestros modelos de IA los leen minuciosamente y nos muestran lo que aprendieron sobre ciertos trastornos. Estamos construyendo sistemas para descubrir nuevos conocimientos que no podríamos descubrir por nuestra cuenta”.

“Incluso si sabemos por otras pruebas o antecedentes familiares que alguien está en riesgo de un trastorno como el Alzheimer, aún no podemos predecir cuándo ocurrirá exactamente”, dijo Vince Calhoun, uno de los autores del estudio. “Las imágenes cerebrales podrían reducir esa ventana de tiempo, al detectar los patrones relevantes cuando aparecen antes de que la enfermedad clínica sea evidente”.

Enlaces relacionados:
Universidad Estatal de Georgia

Half Apron
Demi
Mammography System (Analog)
MAM VENUS
New
Digital Color Doppler Ultrasound System
MS22Plus
Multi-Use Ultrasound Table
Clinton

Canales

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: la herramienta de diagnóstico podría mejorar las decisiones de diagnóstico y tratamiento para pacientes con infecciones pulmonares crónicas (foto cortesía de SNMMI)

Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar

Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más

Imaginología General

ver canal
Imagen: El Dr. Luciano Sposato (izquierda) y el Dr. Rodrigo Bagur (derecha) revisan la exploración de un paciente (foto cortesía de Rena Panchyshyn/LHSC)

La ampliación de TC detecta coágulos sanguíneos ocultos en pacientes con ictus

Los accidentes cerebrovasculares (ACV) causados por coágulos sanguíneos u otros mecanismos que obstruyen el flujo sanguíneo cerebral representan aproximadamente el 85 % de todos los ACV.... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.