Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Parker Laboratories

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.
30 ene 2023 - 02 feb 2023

Algoritmo de diagnóstico médico de IA para análisis de imágenes de RM utiliza autoaprendizaje en todos los hospitales

Por el equipo editorial de MedImaging en español
Actualizado el 02 Sep 2022
Print article
Imagen: El algoritmo de diagnóstico federado basado en IA aprende eficientemente en los hospitales con cumplimiento de protección de datos (Fotografía cortesía de Pexels)
Imagen: El algoritmo de diagnóstico federado basado en IA aprende eficientemente en los hospitales con cumplimiento de protección de datos (Fotografía cortesía de Pexels)

La salud está siendo revolucionada actualmente por la inteligencia artificial. Con soluciones precisas de IA, los médicos pueden recibir apoyo en el diagnóstico. Sin embargo, tales algoritmos requieren una cantidad considerable de datos y los hallazgos del especialista radiológico asociado para el entrenamiento. Sin embargo, la creación de una base de datos central tan grande impone exigencias especiales a la protección de datos. Además, la creación de hallazgos y anotaciones, por ejemplo, el marcado de tumores en una imagen de resonancia magnética, requiere mucho tiempo. Para superar estos desafíos, los investigadores han desarrollado un algoritmo que puede aprender de forma independiente entre diferentes instituciones médicas. La característica clave del algoritmo es que es de "autoaprendizaje", es decir, no requiere hallazgos extensos que consumen mucho tiempo ni marcados por los radiólogos en las imágenes de resonancia magnética.

Un equipo multidisciplinario de la Universidad Técnica de Munich (TUM, Munich, Alemania) colaboró con otros médicos e investigadores para desarrollar un algoritmo de diagnóstico médico basado en IA para imágenes de resonancia magnética del cerebro, sin datos anotados o procesados por un radiólogo. Además, este algoritmo debía ser entrenado "federalmente": de esta manera, el algoritmo "viene a los datos", de modo que los datos de imágenes médicas que requieren una protección especial podrían permanecer en la clínica respectiva y no tener que recopilarse de forma centralizada. El algoritmo federado se entrenó en más de 1.500 exploraciones por RM de participantes sanos del estudio de cuatro instituciones, manteniendo la privacidad de los datos.

Luego, el algoritmo se usó para analizar más de 500 resonancias magnéticas de pacientes para detectar enfermedades como la esclerosis múltiple, la enfermedad vascular y varias formas de tumores cerebrales que el algoritmo nunca había visto antes. Esto abre nuevas posibilidades para desarrollar algoritmos federados eficientes basados en IA que aprenden de forma autónoma mientras protegen la privacidad. En su estudio, los investigadores pudieron demostrar que el algoritmo de IA federado que desarrollaron superó a cualquier algoritmo de IA entrenado utilizando datos de una sola institución. Para agrupar el conocimiento sobre las imágenes de resonancia magnética del cerebro, el equipo de investigación entrenó el algoritmo de IA en instituciones médicas diferentes e independientes sin violar la privacidad de los datos ni recopilarlos de forma centralizada. Al proteger los datos de los pacientes y al mismo tiempo reducir la carga de trabajo de los radiólogos, los investigadores creen que su tecnología de inteligencia artificial federada hará avanzar significativamente la medicina digital.

"Una vez que este algoritmo aprenda cómo se ven las imágenes de resonancia magnética del cerebro sano, le será más fácil detectar enfermedades. Para lograr esto, se requiere una agregación computacional inteligente y coordinación entre los institutos participantes", dijo el Prof. Dr. Albarqouni. PD Dr. Benedikt Wiestler, médico principal del Hospital Universitario de TUM, que participó en el estudio. "Entrenar el modelo con datos de diferentes centros contribuye significativamente al hecho de que nuestro algoritmo detecta enfermedades de manera mucho más sólida que otros algoritmos que solo se entrenan con datos de un centro".

 

 

Proveedor de oro
SBRT Phantom with Removable Spine
E2E SBRT Phantom with Removable Spine Model 036S-CVXX-xx
New
Digital Radiographic System
Vieworks VIVIX-S
New
Ultrasound System
Xario 200G
New
Digital Color Doppler Ultrasound
EC100A

Print article
CIRS -  MIRION
Radcal

Canales

Radiografía

ver canal
Imagen: Modelo de aprendizaje profundo detecta riesgo de ECV utilizando imágenes de rayos X de tórax (Fotografía cortesía del Hospital General de Massachusetts)

IA predice riesgo de enfermedades cardíacas utilizando una sola radiografía

Las guías actuales recomiendan estimar el riesgo a 10 años de eventos cardiovasculares adversos mayores para establecer quién debe recibir una estatina para la prevención primaria.... Más

Ultrasonido

ver canal
Imagen: Una combinación de ultrasonido y nanoburbujas permite que los tumores cancerosos sean destruidos sin cirugía (Fotografía cortesía de la Universidad de Tel Aviv)

Ultrasonido combinado con nanoburbujas permite eliminar tumores sin cirugía

El método predominante de tratamiento del cáncer es la extirpación quirúrgica del tumor, en combinación con tratamientos complementarios como la quimioterapia y la inmunoterapia.... Más

Medicina Nuclear

ver canal
Imagen: El PET/CT digital de ultra alta resolución uEXPLORER ofrece escaneo dinámico de cuerpo completo (Fotografía cortesía de UIH)

Primer PET/CT de cuerpo completo del mundo permite escanear todo el cuerpo en una posición de cama

United Imaging Healthcare (UIH, Shanghái, China) presentó el primer PET/CT de cuerpo completo del mundo, uEXPLORER, con un campo de visión (FOV) axial de PET de 194 cm que permite... Más

Imaginología General

ver canal
Imagen: CT de conteo de fotones ultra alta resolución revela bronquiolectasis (Fotografía cortesía de la Universidad Médica de Viena)

TC con recuento de fotones muestra más daño pulmonar posterior a la COVID-19

La TC con detector de recuento de fotones (PCD) ha surgido en la última década como una herramienta prometedora de imagenología. Funciona convirtiendo fotones de rayos X directamente... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2022 Globetech Media. All rights reserved.