Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.

Modelo de PET/MRI de aprendizaje automático elimina biopsia del ganglio linfático centinela en la mayoría de las pacientes con cáncer de mama

Por el equipo editorial de MedImaging en español
Actualizado el 23 Nov 2022
Print article
Imagen: Resumen gráfico (Fotografía cortesía del Hospital Universitario Düsseldorf)
Imagen: Resumen gráfico (Fotografía cortesía del Hospital Universitario Düsseldorf)

La presencia de metástasis en los ganglios linfáticos en pacientes con cáncer de mama juega un papel crucial en la planificación del tratamiento, especialmente en lo que respecta a la extensión de la cirugía y la radiación. Por lo tanto, es de gran relevancia clínica distinguir a las pacientes con metástasis en los ganglios linfáticos de las pacientes sin metástasis en los ganglios linfáticos. Ahora, casi el 70 % de las pacientes con cáncer de mama podrían averiguar si el cáncer se ha propagado a los ganglios linfáticos sin tener que someterse a una biopsia invasiva del ganglio centinela. Una nueva investigación muestra que con la ayuda del aprendizaje automático (un tipo de inteligencia artificial), la metástasis de los ganglios linfáticos axilares se puede descartar de manera confiable en base a imágenes con PET/MRI.

En el estudio, los investigadores del Instituto de Radiología Diagnóstica e Intervencionista del Hospital Universitario de Düsseldorf (Düsseldorf, Alemania) intentaron determinar si los modelos de predicción de aprendizaje automático podían determinar el estado de los ganglios linfáticos en los exámenes PET/MRI con la misma precisión que un radiólogo experimentado. Un total de 303 pacientes con cáncer de mama primario de tres centros médicos fueron reclutadas para el estudio y se dividieron en muestra de grupo de entrenamiento y muestra de grupo de prueba.

Todos los pacientes se sometieron a una resonancia magnética y una PET/RMN dedicada de cuerpo entero con 18F-FDG. Los conjuntos de datos de imágenes se evaluaron en busca de metástasis en los ganglios linfáticos axilares en función de las características estructurales y funcionales. Los modelos de aprendizaje automático se desarrollaron en base a las IRM y PET/MRI del grupo de muestra de entrenamiento y luego se aplicaron a la muestra del grupo de prueba. La precisión diagnóstica de la resonancia magnética fue del 87,5 % tanto para los radiólogos como para el algoritmo de aprendizaje automático. Para PET/MRI, la precisión fue del 89,3 % para los radiólogos y del 91,2 % para el aprendizaje automático. Tras ajustar el modelo de aprendizaje automático para PET/MRI, se consiguió una sensibilidad del 96,2 % y una especificidad del 68,2 %.

"El sesenta por ciento de las pacientes no tienen metástasis en los ganglios linfáticos en el momento del diagnóstico inicial de cáncer de mama", dijo la autora del estudio, Janna Morawitz, MD, residente de radiología en el Instituto de Radiología Diagnóstica e Intervencionista del Hospital Universitario de Düsseldorf. "Como tal, sería deseable poder probar el estado de los ganglios linfáticos negativos mediante imágenes con un alto grado de certeza para evitar a estos pacientes el procedimiento invasivo de biopsia o cirugía".

Enlaces relacionados:
Hospital Universitario de Düsseldorf  

Proveedor de oro
SBRT Phantom with Removable Spine
E2E SBRT Phantom with Removable Spine Model 036S-CVXX-xx
Proveedor de oro
Premium Ultrasound Scanner
ARIETTA 850
Air Displacement Plethysmography System
BOD POD
New
Ceiling-Mounted Digital X-Ray System
DigitalDiagnost C50

Print article
Radcal

Canales

Ultrasonido

ver canal
Imagen: El nuevo sistema de ultrasonido premium MyLab X90 (Fotografía cortesía de Esaote)

Sistema de ultrasonido alimentado por IA aumenta la velocidad y la precisión para revolucionar los flujos de trabajo

Históricamente, el ultrasonido ha estado entre los dispositivos médicos más dependientes del operador. Un tecnólogo experto con experiencia es capaz de obtener imágenes... Más

Medicina Nuclear

ver canal
Imagen: El seguimiento del tratamiento con radiación en tiempo real promete una terapia contra el cáncer más segura y efectiva (Fotografía cortesía de Pexels)

Imágenes en 3D en tiempo real brindan visión única de los rayos X que golpean el interior del cuerpo durante la radioterapia

La radiación se usa en el tratamiento de cientos de miles de pacientes con cáncer cada año, bombardeando un área del cuerpo con ondas y partículas de alta energía,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2023 Globetech Media. All rights reserved.