Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de PET/MRI de aprendizaje automático elimina biopsia del ganglio linfático centinela en la mayoría de las pacientes con cáncer de mama

Por el equipo editorial de MedImaging en español
Actualizado el 23 Nov 2022
Print article
Imagen: Resumen gráfico (Fotografía cortesía del Hospital Universitario Düsseldorf)
Imagen: Resumen gráfico (Fotografía cortesía del Hospital Universitario Düsseldorf)

La presencia de metástasis en los ganglios linfáticos en pacientes con cáncer de mama juega un papel crucial en la planificación del tratamiento, especialmente en lo que respecta a la extensión de la cirugía y la radiación. Por lo tanto, es de gran relevancia clínica distinguir a las pacientes con metástasis en los ganglios linfáticos de las pacientes sin metástasis en los ganglios linfáticos. Ahora, casi el 70 % de las pacientes con cáncer de mama podrían averiguar si el cáncer se ha propagado a los ganglios linfáticos sin tener que someterse a una biopsia invasiva del ganglio centinela. Una nueva investigación muestra que con la ayuda del aprendizaje automático (un tipo de inteligencia artificial), la metástasis de los ganglios linfáticos axilares se puede descartar de manera confiable en base a imágenes con PET/MRI.

En el estudio, los investigadores del Instituto de Radiología Diagnóstica e Intervencionista del Hospital Universitario de Düsseldorf (Düsseldorf, Alemania) intentaron determinar si los modelos de predicción de aprendizaje automático podían determinar el estado de los ganglios linfáticos en los exámenes PET/MRI con la misma precisión que un radiólogo experimentado. Un total de 303 pacientes con cáncer de mama primario de tres centros médicos fueron reclutadas para el estudio y se dividieron en muestra de grupo de entrenamiento y muestra de grupo de prueba.

Todos los pacientes se sometieron a una resonancia magnética y una PET/RMN dedicada de cuerpo entero con 18F-FDG. Los conjuntos de datos de imágenes se evaluaron en busca de metástasis en los ganglios linfáticos axilares en función de las características estructurales y funcionales. Los modelos de aprendizaje automático se desarrollaron en base a las IRM y PET/MRI del grupo de muestra de entrenamiento y luego se aplicaron a la muestra del grupo de prueba. La precisión diagnóstica de la resonancia magnética fue del 87,5 % tanto para los radiólogos como para el algoritmo de aprendizaje automático. Para PET/MRI, la precisión fue del 89,3 % para los radiólogos y del 91,2 % para el aprendizaje automático. Tras ajustar el modelo de aprendizaje automático para PET/MRI, se consiguió una sensibilidad del 96,2 % y una especificidad del 68,2 %.

"El sesenta por ciento de las pacientes no tienen metástasis en los ganglios linfáticos en el momento del diagnóstico inicial de cáncer de mama", dijo la autora del estudio, Janna Morawitz, MD, residente de radiología en el Instituto de Radiología Diagnóstica e Intervencionista del Hospital Universitario de Düsseldorf. "Como tal, sería deseable poder probar el estado de los ganglios linfáticos negativos mediante imágenes con un alto grado de certeza para evitar a estos pacientes el procedimiento invasivo de biopsia o cirugía".

Enlaces relacionados:
Hospital Universitario de Düsseldorf  

Miembro Oro
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
PACS Workstation
CHILI Web Viewer
New
FMT Radiographic Suite
AdvantagePlus ML1
DR Flat Panel Detector
1500L

Print article

Canales

Radiografía

ver canal
Imagen: La detección de cáncer de seno asistido por AI puede reducir las pruebas innecesarias (foto cortesía de Wustl)

Asistencia de IA mejora detección del cáncer de mama al reducir los falsos positivos

Radiólogos suelen detectar un caso de cáncer por cada 200 mamografías revisadas. Sin embargo, estas evaluaciones a menudo dan como resultado falsos positivos, lo que lleva a retiros... Más

Ultrasonido

ver canal
Imagen: Diagrama esquemático del sistema de administración de fármacos de nanopartículas estimulados por ultrasonido para la terapia de biopelícula (foto cortesía de BIO Integration))

Nueva nanopartícula activada por ultrasonido elimina la biopelícula y la infección bacteriana

Las biopelículas, formadas por bacterias que se agregan en densas comunidades para protegerse contra las duras condiciones ambientales, contribuyen de manera importante a diversas enfermedades infecciosas.... Más

Medicina Nuclear

ver canal
Imagen: El sistema de IA utiliza imágenes de gammagrafía para el diagnóstico temprano de amiloidosis cardíaca (Fotografía cortesía de 123RF)

Sistema de IA detecta de forma automática y confiable amiloidosis cardíaca mediante imágenes de gammagrafía

La amiloidosis cardíaca, una afección caracterizada por la acumulación de depósitos anormales de proteínas (amiloide) en el músculo cardíaco, afecta gravemente... Más

Imaginología General

ver canal
Imagen: El modelo de aprendizaje automático Tyche podría ayudar a capturar información crucial. (Foto cortesía de 123RF)

Nuevo método de IA captura la incertidumbre en imágenes médicas

En el campo de la biomedicina, la segmentación es el proceso de anotar píxeles de una estructura importante en imágenes médicas, como órganos o células. Los modelos de Inteligencia Artificial (IA) se utilizan... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.