Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de PET/MRI de aprendizaje automático elimina biopsia del ganglio linfático centinela en la mayoría de las pacientes con cáncer de mama

Por el equipo editorial de MedImaging en español
Actualizado el 23 Nov 2022
Imagen: Resumen gráfico (Fotografía cortesía del Hospital Universitario Düsseldorf)
Imagen: Resumen gráfico (Fotografía cortesía del Hospital Universitario Düsseldorf)

La presencia de metástasis en los ganglios linfáticos en pacientes con cáncer de mama juega un papel crucial en la planificación del tratamiento, especialmente en lo que respecta a la extensión de la cirugía y la radiación. Por lo tanto, es de gran relevancia clínica distinguir a las pacientes con metástasis en los ganglios linfáticos de las pacientes sin metástasis en los ganglios linfáticos. Ahora, casi el 70 % de las pacientes con cáncer de mama podrían averiguar si el cáncer se ha propagado a los ganglios linfáticos sin tener que someterse a una biopsia invasiva del ganglio centinela. Una nueva investigación muestra que con la ayuda del aprendizaje automático (un tipo de inteligencia artificial), la metástasis de los ganglios linfáticos axilares se puede descartar de manera confiable en base a imágenes con PET/MRI.

En el estudio, los investigadores del Instituto de Radiología Diagnóstica e Intervencionista del Hospital Universitario de Düsseldorf (Düsseldorf, Alemania) intentaron determinar si los modelos de predicción de aprendizaje automático podían determinar el estado de los ganglios linfáticos en los exámenes PET/MRI con la misma precisión que un radiólogo experimentado. Un total de 303 pacientes con cáncer de mama primario de tres centros médicos fueron reclutadas para el estudio y se dividieron en muestra de grupo de entrenamiento y muestra de grupo de prueba.

Todos los pacientes se sometieron a una resonancia magnética y una PET/RMN dedicada de cuerpo entero con 18F-FDG. Los conjuntos de datos de imágenes se evaluaron en busca de metástasis en los ganglios linfáticos axilares en función de las características estructurales y funcionales. Los modelos de aprendizaje automático se desarrollaron en base a las IRM y PET/MRI del grupo de muestra de entrenamiento y luego se aplicaron a la muestra del grupo de prueba. La precisión diagnóstica de la resonancia magnética fue del 87,5 % tanto para los radiólogos como para el algoritmo de aprendizaje automático. Para PET/MRI, la precisión fue del 89,3 % para los radiólogos y del 91,2 % para el aprendizaje automático. Tras ajustar el modelo de aprendizaje automático para PET/MRI, se consiguió una sensibilidad del 96,2 % y una especificidad del 68,2 %.

"El sesenta por ciento de las pacientes no tienen metástasis en los ganglios linfáticos en el momento del diagnóstico inicial de cáncer de mama", dijo la autora del estudio, Janna Morawitz, MD, residente de radiología en el Instituto de Radiología Diagnóstica e Intervencionista del Hospital Universitario de Düsseldorf. "Como tal, sería deseable poder probar el estado de los ganglios linfáticos negativos mediante imágenes con un alto grado de certeza para evitar a estos pacientes el procedimiento invasivo de biopsia o cirugía".

Enlaces relacionados:
Hospital Universitario de Düsseldorf  

New
Miembro Plata
X-Ray QA Device
Accu-Gold+ Touch Pro
New
Mammo DR Retrofit Solution
DR Retrofit Mammography
Biopsy Software
Affirm® Contrast
New
Adjustable Mobile Barrier
M-458

Canales

Radiografía

ver canal
Imagen: la AI evalúa las mamografías mejor que los radiólogos (foto cortesía de la Universidad de Radboud)

Estrategia híbrida con IA mejora la interpretación de mamografías

Los programas de detección del cáncer de mama dependen en gran medida de la interpretación de las mamografías por parte de radiólogos, un proceso que requiere mucho tiempo... Más

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: la herramienta de diagnóstico podría mejorar las decisiones de diagnóstico y tratamiento para pacientes con infecciones pulmonares crónicas (foto cortesía de SNMMI)

Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar

Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más

Imaginología General

ver canal
Imagen: un modelo de aprendizaje profundo basado en parches con un conjunto de datos de entrenamiento limitado para la segmentación de tumores hepáticos en TC con contraste (Yang et al. (2025), IEEE Access, 10.1109/Access.2025.3570728)

Modelo de IA segmenta con precisión tumores hepáticos a partir de tomografías computarizadas

El cáncer de hígado es el sexto tipo de cáncer más común en el mundo y una de las principales causas de muerte por cáncer. La segmentación precisa de los tumores hepáticos es crucial para el diagnóstico... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.