Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Algoritmo de IA identifica fallas en escáner de resonancia magnética

Por el equipo editorial de MedImaging en español
Actualizado el 22 Dec 2022
Imagen: Un algoritmo de IA puede garantizar la detección automática oportuna de fallas en el escáner de resonancia magnética (Fotografía cortesía de Pexels)
Imagen: Un algoritmo de IA puede garantizar la detección automática oportuna de fallas en el escáner de resonancia magnética (Fotografía cortesía de Pexels)

La resonancia magnética es un diagnóstico de imágenes 3D de alta precisión de órganos internos sin radiación ionizante dañina. Los radiólogos utilizan algoritmos de inteligencia artificial (IA) en su práctica habitual. Sin embargo, los diagnósticos por imágenes están desarrollándose y volviéndose más eficientes. Ahora, los investigadores han desarrollado un nuevo algoritmo de inteligencia artificial para el control de calidad de los escáneres de resonancia magnética que proporcionará una detección oportuna de las fallas del escáner automáticamente.

Para automatizar la identificación de problemas de servicio de la máquina, los científicos de la Universidad Estatal de Moscú (Moscú, Rusia) han desarrollado un método para monitorear la resonancia magnética, utilizando imágenes clínicas y soluciones basadas en IA entrenada. Esto permitirá una identificación más rápida de los escáneres de resonancia magnética que funcionan mal y reducirá el tiempo de inactividad y los costos de reparación. El algoritmo de IA aún requiere capacitación y pruebas adicionales, pero los resultados indican la viabilidad de su implementación.

El nuevo método de control de calidad basado en el aprendizaje automático para escáneres de resonancia magnética puede ayudar a evitar averías y reducir el tiempo de inactividad. La configuración de la IA requiere el muestreo de imágenes de resonancia magnética de varios escáneres con un control de calidad preciso de los resultados. El algoritmo de IA ha sido entrenado para distinguir entre imágenes de dispositivos en funcionamiento y defectuosos. Una evaluación experimental basada en los datos mostró la ventaja del método desarrollado sobre los análogos en términos de precisión.

La nueva tecnología ofrece una serie de ventajas. En primer lugar, ahorra tiempo a los radiógrafos que necesitan evaluar manualmente la calidad del escáner de resonancia magnética. Este procedimiento requiere entrenamiento especial y tiempo. El control de calidad del equipo de resonancia magnética debe realizarse diariamente o al menos semanalmente. Con la nueva tecnología de IA, el control automático de la calidad de la imagen se puede realizar las 24 horas del día, los 7 días de la semana. El análisis de una imagen 3D toma menos de un segundo, después de lo cual el sistema puede marcar inmediatamente cualquier imagen "sospechosa". El personal de radiología puede entonces analizar la información recibida y, si es necesario, llamar a un equipo técnico.

Enlaces relacionados:
Universidad Estatal de Moscú

Computed Tomography System
Aquilion ONE / INSIGHT Edition
Ultrasound Table
Women’s Ultrasound EA Table
New
MRI System
nanoScan MRI 3T/7T
Multi-Use Ultrasound Table
Clinton

Canales

Radiografía

ver canal
Imagen: la AI evalúa las mamografías mejor que los radiólogos (foto cortesía de la Universidad de Radboud)

Estrategia híbrida con IA mejora la interpretación de mamografías

Los programas de detección del cáncer de mama dependen en gran medida de la interpretación de las mamografías por parte de radiólogos, un proceso que requiere mucho tiempo... Más

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: la herramienta de diagnóstico podría mejorar las decisiones de diagnóstico y tratamiento para pacientes con infecciones pulmonares crónicas (foto cortesía de SNMMI)

Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar

Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más

Imaginología General

ver canal
Imagen: un modelo de aprendizaje profundo basado en parches con un conjunto de datos de entrenamiento limitado para la segmentación de tumores hepáticos en TC con contraste (Yang et al. (2025), IEEE Access, 10.1109/Access.2025.3570728)

Modelo de IA segmenta con precisión tumores hepáticos a partir de tomografías computarizadas

El cáncer de hígado es el sexto tipo de cáncer más común en el mundo y una de las principales causas de muerte por cáncer. La segmentación precisa de los tumores hepáticos es crucial para el diagnóstico... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.