Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




Dispositivo de resonancia magnética de cuerpo entero de bajo costo combinado con IA genera resultados de alta calidad

Por el equipo editorial de MedImaging en español
Actualizado el 03 Jun 2024
Imagen: Resonancia magnética de cuerpo entero con computación a 0.05 Tesla (foto cortesía de Zhao, et al., Doi: 10.1126/science.adm7168)
Imagen: Resonancia magnética de cuerpo entero con computación a 0.05 Tesla (foto cortesía de Zhao, et al., Doi: 10.1126/science.adm7168)

La resonancia magnética (RM) ha transformado significativamente la atención médica, proporcionando un método no invasivo y libre de radiación para obtener imágenes detalladas. Es especialmente prometedor para el futuro del diagnóstico médico, ya que se integra con la inteligencia artificial (IA). Sin embargo, después de cincuenta años de desarrollo, la tecnología de resonancia magnética todavía está en gran medida fuera del alcance de muchos, particularmente en los países de ingresos bajos y medianos, principalmente debido a los costos prohibitivos de las máquinas de resonancia magnética superconductoras estándar y la infraestructura especializada que requieren. Estas máquinas suelen estar ubicadas en departamentos de radiología especializados o grandes centros de imágenes, lo que limita su presencia en centros sanitarios más pequeños. Además, la necesidad de salas protegidas contra radiofrecuencia (RF) y las demandas de alta potencia también restringen la adopción más amplia de la tecnología de resonancia magnética. Ahora, un nuevo estudio ha demostrado que el aprendizaje automático puede permitir sistemas de resonancia magnética de baja potencia que sean más baratos y seguros, sin comprometer la precisión del diagnóstico.

Los hallazgos del estudio realizado por investigadores de la Universidad de Hong Kong (RAE de Hong Kong, China) marcan un importante paso adelante hacia la creación de escáneres de resonancia magnética de campo ultrabajo (ULF) asequibles, orientados al paciente y mejorados con aprendizaje profundo. Estas innovaciones tienen como objetivo satisfacer las necesidades clínicas no cubiertas en diversos entornos sanitarios globales. Para superar las barreras al acceso a la resonancia magnética, el equipo diseñó un escáner de resonancia magnética ULF que es a la vez de bajo consumo y simplificado para un uso más fácil. Funciona con un tomacorriente de pared estándar y no requiere blindaje magnético o de RF. Este escáner utiliza un modesto imán de 0,05 Tesla (T), significativamente menos potente que los imanes típicos de 1,5 T a 7 T que se encuentran en la mayoría de los dispositivos de resonancia magnética, y emplea detección activa combinada con técnicas de aprendizaje profundo para minimizar la interferencia electromagnética y mejorar la calidad de la imagen. Además, el consumo de energía del dispositivo es considerablemente menor durante las exploraciones, utilizando sólo 1800 vatios (W), en comparación con los 25000 W o más que requieren los sistemas de resonancia magnética tradicionales. En pruebas realizadas con voluntarios sanos, el escáner produjo con éxito imágenes tan claras y detalladas como las de los sistemas de resonancia magnética de mayor potencia que se utilizan actualmente en la clínica.

"La resonancia magnética de campo bajo aún tiene que madurar para permitir un acceso rentable a las imágenes médicas", afirmaron los investigadores. "Su potencial como tecnología sanitaria esencial y ambientalmente sostenible quedará demostrado cuando muchas comunidades de todo el mundo puedan utilizar la resonancia magnética de campo bajo sin barreras".

Enlaces relacionados:
La Universidad de Hong Kong

Post-Processing Imaging System
DynaCAD Prostate
Pocket Fetal Doppler
CONTEC10C/CL
High-Precision QA Tool
DEXA Phantom
Mammography System (Analog)
MAM VENUS

Canales

Radiografía

ver canal
Imagen: la prueba de detección \"dos por uno\" podría ayudar a detectar las principales causas de muerte de mujeres en todo el mundo (foto cortesía de Shutterstock)

Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... Más

Ultrasonido

ver canal
Imagen: el parche de ultrasonido realiza simultáneamente imágenes de ultrasonido y medición de la presión arterial de ambas arterias carótidas (Fotografía cortesía de KIST)

Parche de ultrasonido desechable supera el rendimiento de los dispositivos existentes

Los dispositivos portátiles de ultrasonido se utilizan ampliamente en el diagnóstico, el monitoreo de la rehabilitación y la telemedicina. Sin embargo, la mayoría de los modelos... Más

Medicina Nuclear

ver canal
Imagen: el Dr. Glenn Bauman, científico de LHSCRI, posa frente al escáner PET (Foto cortesía de LHSCRI).

Nueva solución de imagen mejora la supervivencia de los pacientes con cáncer de próstata recurrente

La detección del cáncer de próstata recurrente sigue siendo uno de los mayores desafíos en oncología, ya que los métodos de imagen estándar, como las g... Más

Imaginología General

ver canal
Imagen: Concepto de los SCNP fotosensibles (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste

Las tecnologías de imagen médica enfrentan desafíos constantes para capturar vistas precisas y detalladas de los procesos internos, especialmente en enfermedades como el cáncer,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.