Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
IBA-Radcal

Deascargar La Aplicación Móvil




Dispositivo de resonancia magnética de cuerpo entero de bajo costo combinado con IA genera resultados de alta calidad

Por el equipo editorial de MedImaging en español
Actualizado el 03 Jun 2024
Imagen: Resonancia magnética de cuerpo entero con computación a 0.05 Tesla (foto cortesía de Zhao, et al., Doi: 10.1126/science.adm7168)
Imagen: Resonancia magnética de cuerpo entero con computación a 0.05 Tesla (foto cortesía de Zhao, et al., Doi: 10.1126/science.adm7168)

La resonancia magnética (RM) ha transformado significativamente la atención médica, proporcionando un método no invasivo y libre de radiación para obtener imágenes detalladas. Es especialmente prometedor para el futuro del diagnóstico médico, ya que se integra con la inteligencia artificial (IA). Sin embargo, después de cincuenta años de desarrollo, la tecnología de resonancia magnética todavía está en gran medida fuera del alcance de muchos, particularmente en los países de ingresos bajos y medianos, principalmente debido a los costos prohibitivos de las máquinas de resonancia magnética superconductoras estándar y la infraestructura especializada que requieren. Estas máquinas suelen estar ubicadas en departamentos de radiología especializados o grandes centros de imágenes, lo que limita su presencia en centros sanitarios más pequeños. Además, la necesidad de salas protegidas contra radiofrecuencia (RF) y las demandas de alta potencia también restringen la adopción más amplia de la tecnología de resonancia magnética. Ahora, un nuevo estudio ha demostrado que el aprendizaje automático puede permitir sistemas de resonancia magnética de baja potencia que sean más baratos y seguros, sin comprometer la precisión del diagnóstico.

Los hallazgos del estudio realizado por investigadores de la Universidad de Hong Kong (RAE de Hong Kong, China) marcan un importante paso adelante hacia la creación de escáneres de resonancia magnética de campo ultrabajo (ULF) asequibles, orientados al paciente y mejorados con aprendizaje profundo. Estas innovaciones tienen como objetivo satisfacer las necesidades clínicas no cubiertas en diversos entornos sanitarios globales. Para superar las barreras al acceso a la resonancia magnética, el equipo diseñó un escáner de resonancia magnética ULF que es a la vez de bajo consumo y simplificado para un uso más fácil. Funciona con un tomacorriente de pared estándar y no requiere blindaje magnético o de RF. Este escáner utiliza un modesto imán de 0,05 Tesla (T), significativamente menos potente que los imanes típicos de 1,5 T a 7 T que se encuentran en la mayoría de los dispositivos de resonancia magnética, y emplea detección activa combinada con técnicas de aprendizaje profundo para minimizar la interferencia electromagnética y mejorar la calidad de la imagen. Además, el consumo de energía del dispositivo es considerablemente menor durante las exploraciones, utilizando sólo 1800 vatios (W), en comparación con los 25000 W o más que requieren los sistemas de resonancia magnética tradicionales. En pruebas realizadas con voluntarios sanos, el escáner produjo con éxito imágenes tan claras y detalladas como las de los sistemas de resonancia magnética de mayor potencia que se utilizan actualmente en la clínica.

"La resonancia magnética de campo bajo aún tiene que madurar para permitir un acceso rentable a las imágenes médicas", afirmaron los investigadores. "Su potencial como tecnología sanitaria esencial y ambientalmente sostenible quedará demostrado cuando muchas comunidades de todo el mundo puedan utilizar la resonancia magnética de campo bajo sin barreras".

Enlaces relacionados:
La Universidad de Hong Kong

Ultrasound Table
Women’s Ultrasound EA Table
X-ray Diagnostic System
FDX Visionary-A
Digital X-Ray Detector Panel
Acuity G4
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices

Canales

Radiografía

ver canal
Imagen: el nuevo método de imágenes de rayos X capaz de producir imágenes de múltiples contrastes fue desarrollado por los investigadores Mini Das y Jingcheng Yuan (Fotografía cortesía de la Universidad de Houston)

Avance en rayos X captura tres tipos de contraste de imagen en una sola toma

La detección de cáncer en etapas tempranas o cambios sutiles en las capas profundas de los tejidos ha sido un desafío para los sistemas de rayos X convencionales, que dependen únicamente... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.