Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de IA diagnostica lesiones cerebrales traumáticas a partir de resonancias magnéticas con un 99 % de precisión

Por el equipo editorial de MedImaging en español
Actualizado el 23 Jul 2024
Imagen: Las vías del cerebro destacadas son las más afectadas por una conmoción cerebral (foto cortesía de Benjamin Hacker, et al)
Imagen: Las vías del cerebro destacadas son las más afectadas por una conmoción cerebral (foto cortesía de Benjamin Hacker, et al)

Una conmoción cerebral es un tipo de lesión cerebral traumática que puede provocar alteraciones temporales en la función cerebral. Ocurren debido a incidentes como lesiones deportivas, latigazos cervicales o un simple golpe en la cabeza. Muchas personas con una conmoción cerebral leve pueden no reconocer que una lesión aparentemente menor podría llevar a problemas de salud graves y a largo plazo si no se trata. Por lo general, el diagnóstico de una conmoción cerebral en entornos clínicos se basa en evaluaciones cognitivas básicas como la Escala de Coma de Glasgow, que evalúa el nivel de conciencia, la capacidad de respuesta y la retención de memoria del paciente. A pesar de estas medidas, se estima que entre el 50 % y el 90 % de los casos de conmoción cerebral no se diagnostican formalmente cuando los pacientes visitan la sala de emergencias, lo que aumenta el riesgo de complicaciones críticas como hemorragias cerebrales y deterioro cognitivo. Ahora, los científicos han desarrollado un modelo de aprendizaje automático sofisticado que puede predecir con mayor precisión el estado de conmoción cerebral en los pacientes.

El modelo se construyó en una colaboración de investigación entre la Escuela de Ingeniería Viterbi de la USC (Los Ángeles, CA, EUA) y la Escuela de Gerontología Leonard Davis de la USC (Los Ángeles, CA, EUA) aprovechando datos de escáneres cerebrales por resonancia magnética de individuos sanos y pacientes con conmociones cerebrales. Las imágenes en las que se basa el clasificador se conocen como imágenes ponderadas por difusión, que miden cómo el líquido viaja a través del cerebro en diferentes rutas de conexión.

El clasificador se construyó utilizando el aprendizaje automático bayesiano, un sistema probabilístico que asigna clasificaciones basadas en las características con menos probabilidades de ser incorrectas o mal clasificadas según el conocimiento de las condiciones previas. El equipo de investigación descubrió que su modelo clasificador era excepcionalmente preciso, demostrando una tasa de precisión del 99 % en la identificación de conmociones cerebrales tanto en la fase de entrenamiento como en la de prueba. Este clasificador es prometedor como base para una herramienta de diagnóstico que podría integrarse en la práctica clínica. Estos hallazgos y el desarrollo de esta herramienta se han documentado en una publicación reciente en el Journal of Neurotrauma .

"Se trata de una precisión mucho mayor de la que jamás hayamos visto con un método como este", dijo Benjamin Hacker, quien dirigió el equipo de investigación. “Creo que es porque nadie había ideado previamente nuestra línea exacta de uso de imágenes ponderadas por difusión, convirtiéndolas en una matriz de conectividad y luego aprovechando el aprendizaje automático de una manera personalizada para descubrir qué vías se ven más afectadas por el traumatismo craneoencefálico. Es ciertamente novedoso porque hasta ahora no hemos tenido un clasificador de conmoción cerebral basado en imágenes que haya sido lo suficientemente preciso como para confiar”.

Enlaces relacionados:
Escuela de Ingeniería de Viterbi de la USC
Escuela de Gerontología Leonard Davis de la USC

Mammography System (Analog)
MAM VENUS
Ultrasound Table
Women’s Ultrasound EA Table
New
Floor‑Mounted Digital X‑Ray System
MasteRad MX30+
High-Precision QA Tool
DEXA Phantom

Canales

Radiografía

ver canal
Imagen: la AI evalúa las mamografías mejor que los radiólogos (foto cortesía de la Universidad de Radboud)

Estrategia híbrida con IA mejora la interpretación de mamografías

Los programas de detección del cáncer de mama dependen en gran medida de la interpretación de las mamografías por parte de radiólogos, un proceso que requiere mucho tiempo... Más

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: la herramienta de diagnóstico podría mejorar las decisiones de diagnóstico y tratamiento para pacientes con infecciones pulmonares crónicas (foto cortesía de SNMMI)

Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar

Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más

Imaginología General

ver canal
Imagen: un modelo de aprendizaje profundo basado en parches con un conjunto de datos de entrenamiento limitado para la segmentación de tumores hepáticos en TC con contraste (Yang et al. (2025), IEEE Access, 10.1109/Access.2025.3570728)

Modelo de IA segmenta con precisión tumores hepáticos a partir de tomografías computarizadas

El cáncer de hígado es el sexto tipo de cáncer más común en el mundo y una de las principales causas de muerte por cáncer. La segmentación precisa de los tumores hepáticos es crucial para el diagnóstico... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.