Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




La inteligencia artificial reduce el tiempo de interpretación de las resonancias magnéticas de la columna lumbar

Por el equipo editorial de MedImaging en español
Actualizado el 09 Aug 2024
Imagen: La IA reduce significativamente los tiempos de interpretación de la resonancia magnética de la columna lumbar (foto cortesía de 123RF)
Imagen: La IA reduce significativamente los tiempos de interpretación de la resonancia magnética de la columna lumbar (foto cortesía de 123RF)

La resonancia magnética (RM) de la columna lumbar se utiliza con frecuencia para evaluar el dolor lumbar, lo que permite detectar condiciones como la protrusión discal, la compresión de las raíces nerviosas y la degeneración discal. Estos hallazgos son cruciales para determinar qué pacientes podrían necesitar intervención quirúrgica. Sin embargo, la evaluación de la estenosis de la columna lumbar mediante RM requiere una clasificación en múltiples niveles, lo cual es repetitivo y requiere mucho tiempo. Además, la falta de sistemas de clasificación estandarizados para definir la estenosis espinal lumbar da como resultado interpretaciones inconsistentes. En respuesta, se han desarrollado modelos de aprendizaje profundo (DL) que utilizan redes neuronales convolucionales para ayudar en el análisis de la RM. Los avances recientes en el aprendizaje automático, impulsados por inteligencia artificial (IA), tienen el potencial de acelerar la interpretación de las exploraciones e identificar con precisión afecciones como la degeneración y otros problemas relacionados con los discos, mejorando así la eficiencia, precisión, confiabilidad y rentabilidad de los informes radiológicos.

Un nuevo estudio realizado en el Hospital General de Sengkang (Singapur) evaluó la eficacia deuna herramienta de asistencia en la lectura basada en IA para reducir el tiempo requerido para interpretar exámenes de RM de la columna lumbar y su precisión en el diagnóstico en comparación con radiólogos experimentados. El estudio incluyó un conjunto de datos de prueba de estudios de RM de la columna lumbar de 51 pacientes, 25 hombres y 26 mujeres, realizados del 1 al 10 de diciembre de 2022. Se analizaron tanto las imágenes axiales ponderadas en T1 y T2 desde L1-2 hasta L5-S1, como las imágenes sagitales ponderadas en T1 y T2.

Los hallazgos del estudio publicado,s en el European Journal of Radiology, revelan que el tiempo promedio de interpretación por estudio de RM fue significativamente más corto con la ayuda de la IA que sin ella. El rango intercuartil (RIC) del tiempo de interpretación con IA fue de 5,29 minutos, frente a 56,46 minutos sin IA. Los hallazgos indican que el uso de un modelo de aprendizaje profundo para analizar exploraciones por RM de estenosis espinal lumbar ahorra sustancialmente tiempo y mejora el acuerdo interobservador entre los residentes en formación de radiología. A medida que la IA se integra más en la práctica clínica, está preparada para aumentar la eficiencia clínica, se espera que aumente la eficiencia clínica, ayude a priorizar las tareas de radiología de manera más efectiva y disminuya el tiempo que los radiólogos necesitan para interpretar los resultados.

Enlaces relacionados:
Hospital General de Sengkang

Biopsy Software
Affirm® Contrast
Diagnostic Ultrasound System
DC-80A
Computed Tomography System
Aquilion ONE / INSIGHT Edition
Miembro Plata
X-Ray QA Device
Accu-Gold+ Touch Pro

Canales

Radiografía

ver canal
Imagen: la prueba de detección \"dos por uno\" podría ayudar a detectar las principales causas de muerte de mujeres en todo el mundo (foto cortesía de Shutterstock)

Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... Más

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: los cristales de perovskita se cultivan en condiciones cuidadosamente controladas a partir de la masa fundida (foto cortesía de Mercouri Kanatzidis/Northwestern University)

Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico

Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más

Imaginología General

ver canal
Imagen: Concepto de los SCNP fotosensibles (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste

Las tecnologías de imagen médica enfrentan desafíos constantes para capturar vistas precisas y detalladas de los procesos internos, especialmente en enfermedades como el cáncer,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.