Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




La inteligencia artificial reduce el tiempo de interpretación de las resonancias magnéticas de la columna lumbar

Por el equipo editorial de MedImaging en español
Actualizado el 09 Aug 2024
Imagen: La IA reduce significativamente los tiempos de interpretación de la resonancia magnética de la columna lumbar (foto cortesía de 123RF)
Imagen: La IA reduce significativamente los tiempos de interpretación de la resonancia magnética de la columna lumbar (foto cortesía de 123RF)

La resonancia magnética (RM) de la columna lumbar se utiliza con frecuencia para evaluar el dolor lumbar, lo que permite detectar condiciones como la protrusión discal, la compresión de las raíces nerviosas y la degeneración discal. Estos hallazgos son cruciales para determinar qué pacientes podrían necesitar intervención quirúrgica. Sin embargo, la evaluación de la estenosis de la columna lumbar mediante RM requiere una clasificación en múltiples niveles, lo cual es repetitivo y requiere mucho tiempo. Además, la falta de sistemas de clasificación estandarizados para definir la estenosis espinal lumbar da como resultado interpretaciones inconsistentes. En respuesta, se han desarrollado modelos de aprendizaje profundo (DL) que utilizan redes neuronales convolucionales para ayudar en el análisis de la RM. Los avances recientes en el aprendizaje automático, impulsados por inteligencia artificial (IA), tienen el potencial de acelerar la interpretación de las exploraciones e identificar con precisión afecciones como la degeneración y otros problemas relacionados con los discos, mejorando así la eficiencia, precisión, confiabilidad y rentabilidad de los informes radiológicos.

Un nuevo estudio realizado en el Hospital General de Sengkang (Singapur) evaluó la eficacia deuna herramienta de asistencia en la lectura basada en IA para reducir el tiempo requerido para interpretar exámenes de RM de la columna lumbar y su precisión en el diagnóstico en comparación con radiólogos experimentados. El estudio incluyó un conjunto de datos de prueba de estudios de RM de la columna lumbar de 51 pacientes, 25 hombres y 26 mujeres, realizados del 1 al 10 de diciembre de 2022. Se analizaron tanto las imágenes axiales ponderadas en T1 y T2 desde L1-2 hasta L5-S1, como las imágenes sagitales ponderadas en T1 y T2.

Los hallazgos del estudio publicado,s en el European Journal of Radiology, revelan que el tiempo promedio de interpretación por estudio de RM fue significativamente más corto con la ayuda de la IA que sin ella. El rango intercuartil (RIC) del tiempo de interpretación con IA fue de 5,29 minutos, frente a 56,46 minutos sin IA. Los hallazgos indican que el uso de un modelo de aprendizaje profundo para analizar exploraciones por RM de estenosis espinal lumbar ahorra sustancialmente tiempo y mejora el acuerdo interobservador entre los residentes en formación de radiología. A medida que la IA se integra más en la práctica clínica, está preparada para aumentar la eficiencia clínica, se espera que aumente la eficiencia clínica, ayude a priorizar las tareas de radiología de manera más efectiva y disminuya el tiempo que los radiólogos necesitan para interpretar los resultados.

Enlaces relacionados:
Hospital General de Sengkang

Portable Color Doppler Ultrasound Scanner
DCU10
Digital Intelligent Ferromagnetic Detector
Digital Ferromagnetic Detector
Ultrasound Table
Women’s Ultrasound EA Table
New
High-Precision QA Tool
DEXA Phantom

Canales

Radiografía

ver canal
Imagen: un algoritmo de aprendizaje profundo detecta los niveles de calcio en la arteria coronaria en tomografías computarizadas de tórax (foto cortesía de Adobe Stock)

IA detecta enfermedades cardíacas ocultas en TC de tórax existentes

El calcio en la arteria coronaria (CAC) es un indicador importante del riesgo cardiovascular, pero su evaluación suele requerir una tomografía computarizada (TC) especializada (gated) que... Más

Ultrasonido

ver canal
Imagen: el nuevo dispositivo implantable para el tratamiento del dolor crónico es pequeño y flexible (foto cortesía de The Zhou Lab at USC)

Dispositivo inalámbrico para el manejo del dolor crónico reduce la necesidad de analgésicos y cirugía

El dolor crónico afecta a millones de personas en todo el mundo, lo que a menudo provoca discapacidad a largo plazo y dependencia de opioides, los cuales conllevan riesgos importantes de efectos... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

Imaginología General

ver canal
Imágenes de resultado positivo en examen de detección de colonografía por TC en un hombre asintomático de 67 años (foto cortesía de Radiology)

La colonografía por TC supera a la prueba de ADN en heces para la detección del cáncer de colon

Dado que el cáncer colorrectal sigue siendo la segunda causa principal de muertes relacionadas con el cáncer a nivel mundial, la detección temprana mediante pruebas de cribado es fundamental... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.