Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo nuevo identifica lesiones de displasia cortical focal a partir de resonancias magnéticas

Por el equipo editorial de MedImaging en español
Actualizado el 30 Oct 2024
Imagen: Marco de segmentación de lesiones DCF basado en transformadores multiescala (foto cortesía de Siat/doi.org/10.1186/s13244-024-01803-8)
Imagen: Marco de segmentación de lesiones DCF basado en transformadores multiescala (foto cortesía de Siat/doi.org/10.1186/s13244-024-01803-8)

La epilepsia es un trastorno neurológico caracterizado por convulsiones epilépticas, y la displasia cortical focal (DCF) es una causa primaria de epilepsia resistente a fármacos. El tratamiento más eficaz para la DCF es la extirpación quirúrgica de las lesiones, que depende en gran medida de su localización y delineación precisas. Sin embargo, la detección de lesiones de DCF en imágenes de resonancia magnética (RM) sigue siendo un desafío importante en la práctica clínica debido a las sutiles alteraciones estructurales que inducen. Ahora, un modelo basado en transformadores multiescala propuesto para la segmentación de extremo a extremo de lesiones de DCF a partir de imágenes de RM multicanal combina un marco de codificador-decodificador basado en red neuronal convolucional (CNN) con vías de transformadores multiescala, mejorando la representación de características de las lesiones dentro de un campo de visión global.

Un equipo de investigación del Instituto de Tecnología Avanzada de Shenzhen (SIAT, Shenzhen, China) de la Academia China de Ciencias, junto con colaboradores, realizó un estudio que demuestra que el codificador CNN extrae características locales, que posteriormente se introducen en las vías de transformación correspondientes para capturar características globales a diferentes escalas. Para minimizar la complejidad y evitar el sobreajuste, los investigadores emplearon un módulo de autoatención dual (DSA) eficiente en términos de computación y memoria para construir la vía de transformación. Este módulo DSA incluye una rama espacial y una rama de canal, que identifican dependencias de largo alcance entre las posiciones de las características y los canales, enfatizando de manera efectiva las áreas y los canales relevantes para las lesiones.

Los investigadores entrenaron y evaluaron el modelo propuesto utilizando un conjunto de datos públicos de imágenes de RM de 85 pacientes, empleando métricas tanto a nivel de sujeto como a nivel de vóxel. Los hallazgos experimentales, publicados en la revista Insights into Imaging , revelaron que el método propuesto detectó lesiones con éxito en el 82,4 % de los pacientes, con una baja tasa de grupos de lesiones de falsos positivos de 0,176 ± 0,381 por paciente. Además, el modelo logró un coeficiente Dice promedio de 0,410 ± 0,288, superando a cinco métodos establecidos.

"Hasta donde sabemos, este es el primer estudio que aplica un modelo basado en transformadores para la segmentación de lesiones de FCD", dijo la Dra. Xu Jinping de SIAT, quien dirigió el equipo. "Nuestro estudio promete ser una herramienta valiosa para los médicos, permitiéndoles detectar lesiones de FCD con rapidez y precisión".

 

High-Precision QA Tool
DEXA Phantom
Digital Intelligent Ferromagnetic Detector
Digital Ferromagnetic Detector
Diagnostic Ultrasound System
DC-80A
Biopsy Software
Affirm® Contrast

Canales

Radiografía

ver canal
Imagen: la prueba de detección \"dos por uno\" podría ayudar a detectar las principales causas de muerte de mujeres en todo el mundo (foto cortesía de Shutterstock)

Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... Más

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: los cristales de perovskita se cultivan en condiciones cuidadosamente controladas a partir de la masa fundida (foto cortesía de Mercouri Kanatzidis/Northwestern University)

Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico

Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más

Imaginología General

ver canal
Imagen: Concepto de los SCNP fotosensibles (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste

Las tecnologías de imagen médica enfrentan desafíos constantes para capturar vistas precisas y detalladas de los procesos internos, especialmente en enfermedades como el cáncer,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.