Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




Modelo nuevo identifica lesiones de displasia cortical focal a partir de resonancias magnéticas

Por el equipo editorial de MedImaging en español
Actualizado el 30 Oct 2024

La epilepsia es un trastorno neurológico caracterizado por convulsiones epilépticas, y la displasia cortical focal (DCF) es una causa primaria de epilepsia resistente a fármacos. Más...

El tratamiento más eficaz para la DCF es la extirpación quirúrgica de las lesiones, que depende en gran medida de su localización y delineación precisas. Sin embargo, la detección de lesiones de DCF en imágenes de resonancia magnética (RM) sigue siendo un desafío importante en la práctica clínica debido a las sutiles alteraciones estructurales que inducen. Ahora, un modelo basado en transformadores multiescala propuesto para la segmentación de extremo a extremo de lesiones de DCF a partir de imágenes de RM multicanal combina un marco de codificador-decodificador basado en red neuronal convolucional (CNN) con vías de transformadores multiescala, mejorando la representación de características de las lesiones dentro de un campo de visión global.

Un equipo de investigación del Instituto de Tecnología Avanzada de Shenzhen (SIAT, Shenzhen, China) de la Academia China de Ciencias, junto con colaboradores, realizó un estudio que demuestra que el codificador CNN extrae características locales, que posteriormente se introducen en las vías de transformación correspondientes para capturar características globales a diferentes escalas. Para minimizar la complejidad y evitar el sobreajuste, los investigadores emplearon un módulo de autoatención dual (DSA) eficiente en términos de computación y memoria para construir la vía de transformación. Este módulo DSA incluye una rama espacial y una rama de canal, que identifican dependencias de largo alcance entre las posiciones de las características y los canales, enfatizando de manera efectiva las áreas y los canales relevantes para las lesiones.

Los investigadores entrenaron y evaluaron el modelo propuesto utilizando un conjunto de datos públicos de imágenes de RM de 85 pacientes, empleando métricas tanto a nivel de sujeto como a nivel de vóxel. Los hallazgos experimentales, publicados en la revista Insights into Imaging , revelaron que el método propuesto detectó lesiones con éxito en el 82,4 % de los pacientes, con una baja tasa de grupos de lesiones de falsos positivos de 0,176 ± 0,381 por paciente. Además, el modelo logró un coeficiente Dice promedio de 0,410 ± 0,288, superando a cinco métodos establecidos.

"Hasta donde sabemos, este es el primer estudio que aplica un modelo basado en transformadores para la segmentación de lesiones de FCD", dijo la Dra. Xu Jinping de SIAT, quien dirigió el equipo. "Nuestro estudio promete ser una herramienta valiosa para los médicos, permitiéndoles detectar lesiones de FCD con rapidez y precisión".

 


Post-Processing Imaging System
DynaCAD Prostate
Half Apron
Demi
40/80-Slice CT System
uCT 528
Ultrasonic Pocket Doppler
SD1
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Radiografía

ver canal
Imagen: el nuevo método de imágenes de rayos X capaz de producir imágenes de múltiples contrastes fue desarrollado por los investigadores Mini Das y Jingcheng Yuan (Fotografía cortesía de la Universidad de Houston)

Avance en rayos X captura tres tipos de contraste de imagen en una sola toma

La detección de cáncer en etapas tempranas o cambios sutiles en las capas profundas de los tejidos ha sido un desafío para los sistemas de rayos X convencionales, que dependen únicamente... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.