Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Un instrumento musical miniaturizado mejora la imagenología con ultrasonido

Por el equipo editorial de Medimaging en español
Actualizado el 26 Nov 2018
Print article
Imagen: Un dispositivo piezoeléctrico en miniatura de “órgano de tubo” mejora las imágenes de ultrasonido (Fotografía cortesía de Botong Zhu/Universidad de Strathclyde).
Imagen: Un dispositivo piezoeléctrico en miniatura de “órgano de tubo” mejora las imágenes de ultrasonido (Fotografía cortesía de Botong Zhu/Universidad de Strathclyde).
Un estudio nuevo muestra que el ancho de banda de los transductores ultrasónicos acoplados por aire puede mejorarse sin pérdida de sensibilidad al conectar tubos de resonancia de varias longitudes a una cavidad central, imitando un órgano de tubo.

Investigadores de la Universidad de Strathclyde (Reino Unido) desarrollaron una modificación de transductor ultrasónico micromaquinado piezoeléctrico (PMUT), que consiste en una película delgada de fluoruro de polivinilo sobre una placa posterior diseñada por estereolitografía. El diseño se inspiró en un órgano de tubos, donde la frecuencia de resonancia de cada tubo está determinada principalmente por su longitud. El ancho de banda de 6 dB del PMUT acoplado es 55,7% y 58,5% en los modos de transmisión y recepción, respectivamente, aproximadamente cinco veces más ancho que un dispositivo estándar personalizado.

Los diseños se desarrollaron y ensayaron utilizando modelos matemáticos y simulaciones por computadora para acelerar el proceso y se imprimieron utilizando técnicas de fabricación de aditivos tridimensionales (3D). Los investigadores agregaron que si bien el desarrollo se encuentra en una etapa temprana, la tecnología podría tener implicaciones significativas en el diseño de audífonos, en sonares subacuáticos y en evaluaciones no destructivas (ECM) de estructuras críticas de seguridad, como las plantas nucleares. El estudio fue publicado en la edición de octubre de 2018 de la revista IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

“Los instrumentos musicales tienen una gran variedad de diseños, pero todos tienen una cosa en común, emiten sonido a través de una amplia gama de frecuencias. Así que hay un tesoro de ideas de diseño para los futuros sensores de imágenes médicas que esperan ser descubiertos entre esta amplia gama de diseños”, dijo el coautor del estudio, el profesor Tony Mulholland, PhD. “Los escáneres de ultrasonido funcionan con una sola frecuencia, y esto explica en parte la resolución relativamente deficiente que se ve. Si tuviéramos un escáner que pudiera emitir ondas en una amplia gama de frecuencias, esto proporcionaría una mejora notable en la capacidad de generación de imágenes”.

“Los instrumentos musicales crean sonidos en una amplia gama de frecuencias y han sido diseñados cuidadosamente a lo largo de los siglos para que sean muy eficientes al hacerlo. Es bien sabido que las tuberías de mayor frecuencia son las más pequeñas en longitud, como por ejemplo en un píccolo. Entonces, para darse cuenta de las frecuencias que están más allá del oído humano, las ondas de ultrasonido, la longitud debe ser muy pequeña, de milímetros”, dijo el autor principal, el profesor James Windmill, PhD, del Centro de Ingeniería Ultrasónica. “Esto sería extremadamente difícil de construir utilizando técnicas de fabricación tradicionales, como las que se usan para construir instrumentos musicales. El uso de impresoras 3D de alta resolución nos permite probar nuevos diseños con ciclos de desarrollo mucho más rápidos”.

Mientras que los transductores piezoeléctricos de cerámica estándar utilizan resonancias en modo de grosor, los PMUT tienen una película delgada y flexible para transmitir y recibir ondas de ultrasonido, y tienen un mejor desempeño en el aire porque la película flexible es más fácil de acoplar a los medios, con una impedancia mecánica más cercana. Y como la película almacena mucha menos energía cinética que las piezocerámicas a granel, los PMUT tienen anchos de banda más grandes cuando están en resonancia. La deflexión de la membrana PMUT es causada por la tensión lateral de su capa piezoeléctrica.

Enlace relacionado:
Universidad de Strathclyde


Print article
Radcal

Canales

Radiografía

ver canal
Imagen: Ejemplos de dosímetros de extremidades Thermo Fisher (Fotografía cortesía de Thermo Fisher Scientific).

Un servicio nuevo de monitorización simplifica los programas de seguridad de la radiación

Un nuevo servicio de monitorización de dosimetría permite a las instalaciones con requisitos de seguridad radiológica simplificar la gestión de sus programas de seguridad. Los Servicios de Dosimetría... Más

Medicina Nuclear

ver canal
Imagen: La plataforma de radiocirugía giroscópica ZAP-X (Fotografía cortesía de ZAP Surgical Systems).

Una plataforma de radiocirugía giroscópica hace la ablación de tumores de cerebro

Una plataforma nueva de radioterapia (RT) administra radiocirugía estereotáctica de dosis altas (SRS) para extirpar de forma no invasiva los tumores cerebrales y otras afecciones intracraneales seleccionadas.... Más

Imaginología General

ver canal
Imagen: El WL12 radiomarcado ilumina el tumor en un ratón durante una TEP (Fotografía cortesía de Sridhar Nimmagadda/ JHU-SOM).

La TEP ayuda a cuantificar el compromiso de los objetivos en la inmunoterapia del cáncer

Un estudio nuevo sugiere que se pueden usar las tomografías por emisión de positrones (TEP) para calcular el compromiso y la cinética de residencia del tumor de las terapias con anticuerpos.... Más

TI en Imaginología

ver canal
Imagen: El software empresarial uPath proporciona mejores herramientas de patología digital (Fotografía cortesía de Roche).

Un software de patología digital mejora la eficiencia del flujo de trabajo

Una plataforma de software novedosa reduce drásticamente los tiempos de generación de imágenes, integra el análisis automatizado de imágenes y permite un mejor intercambio de casos entre patólogos.... Más

Industria

ver canal
Imagen: El software cmTriage permite a un radiólogo personalizar, clasificar y priorizar su lista de trabajo de mamografía en función de los casos que pueden necesitar atención inmediata (Fotografía cortesía de CureMetrix).

Un software de mamografía basado en IA recibe la aprobación de la FDA

CureMetrix (La Jolla, CA, EUA; www.curemetrix.com) recibió la autorización de la Administración de Medicamentos y Alimentos de los EUA para comercializar cmTriage, una herramienta de optimización del flujo... Más
Copyright © 2000-2019 Globetech Media. All rights reserved.