Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Download Mobile App




La IA mejora la identificación mediante rayos X de los marcapasos

Por el equipo editorial de Medimaging en español
Actualizado el 16 Apr 2019
Print article
Imagen: Un estudio nuevo afirma que el software de inteligencia artificial (IA) puede ayudar a identificar la información de los marcapasos más rápido que los métodos actuales (Fotografía cortesía de iStock).
Imagen: Un estudio nuevo afirma que el software de inteligencia artificial (IA) puede ayudar a identificar la información de los marcapasos más rápido que los métodos actuales (Fotografía cortesía de iStock).
Según un estudio nuevo, el software de inteligencia artificial (IA) puede ayudar a determinar la marca y el modelo de los dispositivos de ritmo cardíaco (DRC) implantados con mayor exactitud y rapidez que los métodos actuales.

El software, desarrollado en el Colegio Imperial de Londres (Imperial; Reino Unido), ayudará al personal de emergencia a eliminar los enfoques actuales para determinar el modelo de un marcapasos o desfibrilador, que implican comparar la apariencia radiográfica de un DRC con un diagrama de flujo manual. Para el estudio, los investigadores extrajeron las imágenes radiográficas de 45 modelos de DRC de cinco fabricantes. Luego desarrollaron una red neuronal convolucional (CNN) usando un conjunto de entrenamiento de 1.451 imágenes. La CNN luego se ensayó en un conjunto que contenía 225 imágenes adicionales, que consta de cinco ejemplos de cada modelo.

La capacidad de la red para identificar al fabricante de un dispositivo se comparó con la de los cardiólogos que utilizaron un diagrama de flujo. Los resultados mostraron que la CNN tenía una exactitud del 99,6% en la identificación del fabricante de un dispositivo y una exactitud del 96,4% en la identificación del grupo del modelo. Entre los cinco cardiólogos que utilizaron el diagrama de flujo, la identificación mediana de la exactitud del fabricante fue del 72%, y la identificación del grupo de modelo no fue posible. El estudio fue publicado el 27 de marzo de 2019 en la revista JACC: Clinical Electrophysiology.

“Los marcapasos y los desfibriladores han mejorado la vida de millones de pacientes. Sin embargo, en algunos casos raros, estos dispositivos pueden fallar y los pacientes se pueden deteriorar como resultado. En estas situaciones, los médicos deben identificar rápidamente el tipo de dispositivo que tiene un paciente para que puedan brindar tratamiento, como cambiar la configuración del dispositivo o reemplazar los cables”, dijo el autor principal James Howard, MD. “Desafortunadamente, los métodos existentes son lentos y desactualizados y hay una necesidad real de encontrar nuevas y mejores formas de identificar los dispositivos en situaciones de emergencia”.

La CNN utiliza una cascada de muchas capas de unidades de procesamiento no lineales para la extracción y transformación de características, y cada capa sucesiva utiliza la salida de la capa anterior como entrada para formar una representación jerárquica.

Enlace relacionado:
Colegio Imperial de Londres


Print article

Canales

Radiografía

ver canal
Imagen: Un estudio nuevo sugiere que proteger a los pacientes durante las radiografías de diagnóstico podría ser contraproducente (Fotografía cortesía de Rebecca Milman Marsh / Shutterstock).

Un nuevo estudio cuestiona los beneficios de proteger a los pacientes durante los exámenes de radiografía

Un estudio nuevo afirma que proteger a los pacientes durante las radiografías de diagnóstico proporciona beneficios insignificantes y aumenta los riesgos. Un estudio escrito por investigadores de la... Más

Imaginología General

ver canal
Imagen: La resonancia magnética ZTE muestra resultados similares a la tomografía computarizada (Fotografía cortesía de 123rf).

Resonancia magnética del cráneo con ZTE es comparable a las imágenes de tomografía computarizada

Un estudio nuevo sugiere que la resonancia magnética del cráneo con tiempo de eco cero (ZTE) podría proporcionar una alternativa clínica a la tomografía computarizada (TC) en pacientes con traumas radiosensibles,... Más

TI en Imaginología

ver canal
Imagen: El software empresarial uPath proporciona mejores herramientas de patología digital (Fotografía cortesía de Roche).

Un software de patología digital mejora la eficiencia del flujo de trabajo

Una plataforma de software novedosa reduce drásticamente los tiempos de generación de imágenes, integra el análisis automatizado de imágenes y permite un mejor intercambio de casos entre patólogos.... Más

Industria

ver canal
Imagen: Se espera que un método nuevo de inteligencia artificial, para detectar el cáncer de mama, supere los métodos existentes que no cumplen con sus predicciones (Fotografía cortesía del MIT).

Método nuevo de IA predice el cáncer de mama con cinco años de antelación

Investigadores de dos instituciones importantes han desarrollado una herramienta nueva con métodos avanzados de inteligencia artificial (IA) para predecir el riesgo futuro de cáncer de mama en una mujer.... Más
Copyright © 2000-2019 Globetech Media. All rights reserved.