Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Parker Laboratories

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.

La IA segmenta automáticamente los riñones y mide sus volúmenes totales usando solo imágenes de ultrasonido 3D

Por el equipo editorial de MedImaging en español
Actualizado el 06 May 2022
Print article
Imagen: Un primer estudio ha aplicado el aprendizaje profundo a US 3D en la PQRAD (Fotografía cortesía de Pexels)
Imagen: Un primer estudio ha aplicado el aprendizaje profundo a US 3D en la PQRAD (Fotografía cortesía de Pexels)

El volumen renal total (VRT) es el biomarcador de imágenes más importante para cuantificar la gravedad de la poliquistosis renal autosómica dominante (PQRAD). La ecografía 3D (US) puede medir con precisión el volumen renal en comparación con la ecografía 2D; sin embargo, la segmentación manual es tediosa y requiere anotadores expertos. El primer estudio en aplicar aprendizaje profundo a US 3D en la PQRAD ha mostrado un desempeño prometedor para la autosegmentación de riñones usando US 3D para medir el VRT, cerca del rastreo humano y la medición de resonancia magnética.

El método de diagnóstico por imágenes y análisis desarrollado por investigadores de la Clínica Mayo (Rochester, MN, EUA), podría ser útil en varios entornos, incluidos diagnóstico por imágenes pediátrico, estudios clínicos y seguimiento longitudinal de la progresión de la enfermedad del paciente. La PQRAD es un trastorno genético en el que se desarrollan quistes dentro de los riñones, lo que hace que los riñones se agranden y pierdan función con el tiempo. A la larga, los volúmenes de los riñones y el hígado aumentan constantemente, produciendo una disminución de la función renal. No existe una cura para la PQR, pero las opciones de tratamiento son la diálisis, el trasplante de riñón, los medicamentos para la presión arterial y la extirpación quirúrgica de los quistes. Si se diagnostica y controla en una etapa temprana, son posibles mejores opciones de tratamiento.

La medición de los volúmenes renales y hepáticos son algunos de los biomarcadores más importantes para cuantificar la gravedad de la PQRAD y se utilizan en la toma de decisiones clínicas. Aparte de la resonancia magnética y la tomografía computarizada, la ecografía (US) es popular y se usa ampliamente para diagnosticar enfermedades renales agudas y crónicas. Las funciones de imágenes calculadas a partir de datos de US utilizando redes neuronales convolucionales profundas mejoraron la clasificación de los niños con anomalías congénitas del riñón y el tracto urinario y los controles. Sin embargo, el cálculo de estas medidas anatómicas normalmente implica la segmentación manual o semiautomática de los riñones en imágenes de US, lo que requiere múltiples anotadores humanos, aumentando la variabilidad entre operadores, reduciendo la confiabilidad y limitando la utilidad en la medicina clínica. La segmentación automática de riñones en imágenes de US con IA no ha progresado recientemente. Existe la necesidad de un mayor desarrollo de imágenes y segmentación de riñones basadas en US para comprender los problemas y mejorar el desempeño de los modelos de IA en la segmentación.

En el primer estudio para medir el volumen total del riñón a partir de imágenes de US en 3D mediante aprendizaje profundo, los investigadores utilizaron imágenes de riñón en 3D adquiridas axialmente en 22 pacientes con PQRAD en los que cada paciente y cada riñón se escanearon tres veces, lo que resultó en 132 escaneos que se segmentaron manualmente. Los investigadores entrenaron una red neuronal convolucional para segmentar todo el riñón y medir el VRT. Posteriormente, se tomaron imágenes de todos los pacientes con resonancia magnética para comparar las mediciones. Los investigadores encontraron que el método mostró un desempeño de segmentación prometedor para la autosegmentación de riñones y el cálculo del volumen total de los riñones, cerca del seguimiento humano y la medición. Los investigadores también compararon su desempeño con la resonancia magnética y encontraron que logró un buen desempeño, lo que sugiere que puede ser útil en poblaciones donde la resonancia magnética es más desafiante, como los niños.

Enlaces relacionados:
Clínica Mayo


Print article
Radcal
CIRS -  MIRION

Canales

Radiografía

ver canal
Imagen: qTrack es una plataforma de gestión de salud pulmonar completa (Fotografía cortesía de Qure AI)

Sistemas de RD portátiles integrados con IA de rayos X de tórax automatizados mejoran las capacidades de diagnóstico

MinXray, Inc. (Northbrook, IL, EUA) ha mejorado aún más las capacidades de diagnóstico de sus sistemas de radiografía digital con la incorporación de la solución... Más

RM

ver canal
Imagen: Un solo escaneo cerebral puede diagnosticar la enfermedad de Alzheimer (Fotografía cortesía de Colegio Imperial)

Sistema de aprendizaje automático basado en resonancia magnética diagnostica la enfermedad de Alzheimer con un solo escáner cerebral

La enfermedad de Alzheimer es la forma más común de demencia, y aunque la mayoría de las personas con Alzheimer la desarrollan después de los 65 años, las personas menores... Más

TI en Imaginología

ver canal
Imagen: Cómo funciona el manejo de imágenes médicas de Nucleus.io (Fotografía cortesía de NucleusHealth)

Plataforma para el manejo de imágenes agiliza los planes de tratamiento

Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... Más

Industria

ver canal
Imagen: La reunión anual de la RSNA es la conferencia de imágenes médicas más grandes del mundo (Fotografía cortesía de la RSNA)

La RSNA 2022 ve un aumento en las presentaciones de resúmenes antes de la reunión anual

La Sociedad Radiológica de América del Norte (RSNA, Oak Brook, IL, EUA) ha anunciado que se han presentado casi 10.400 resúmenes científicos y educativos para la 108.... Más
Copyright © 2000-2022 Globetech Media. All rights reserved.