Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA identifica rápidamente trastornos raros potencialmente mortales a partir de ecografías

Por el equipo editorial de MedImaging en español
Actualizado el 21 Jul 2022
Imagen: Los investigadores utilizaron la IA para diagnosticar el defecto de nacimiento en las imágenes de ultrasonido fetal (Fotografía cortesía de la Universidad de Ottawa)
Imagen: Los investigadores utilizaron la IA para diagnosticar el defecto de nacimiento en las imágenes de ultrasonido fetal (Fotografía cortesía de la Universidad de Ottawa)

El higroma quístico es una afección embrionaria que hace que el sistema vascular linfático se desarrolle de manera anormal. Es un trastorno raro y potencialmente mortal que conduce a la inflamación de líquido alrededor de la cabeza y el cuello. Por lo general, el defecto congénito se puede diagnosticar fácilmente antes del nacimiento durante una cita de ultrasonido. Ahora, un nuevo estudio ha demostrado que la arquitectura de aprendizaje profundo puede ayudar a identificar el higroma quístico a partir de las ecografías del primer trimestre.

En un nuevo estudio de prueba de concepto, los investigadores de la Universidad de Ottawa (Ontario, Canadá) son pioneros en el uso de un modelo único de aprendizaje profundo basado en inteligencia artificial como herramienta de asistencia para la lectura rápida y precisa de imágenes de ultrasonido. El objetivo del estudio del equipo era demostrar el potencial de la arquitectura de aprendizaje profundo para respaldar la identificación temprana y confiable del higroma quístico a partir de ecografías del primer trimestre. Los investigadores probaron qué tan bien el reconocimiento de patrones impulsado por IA podría diagnosticar el defecto de nacimiento prenatalmente mediante ultrasonografía.

"Lo que demostramos fue que en el campo del ultrasonido podemos usar las mismas herramientas para clasificar e identificar imágenes con una alta sensibilidad y especificidad", dijo el Dr. Mark Walker de la Facultad de Medicina de la Universidad de Ottawa, quien dirigió el estudio. y cree que el enfoque también podría aplicarse a otras anomalías fetales generalmente identificadas por ultrasonografía.

Enlaces relacionados:
Universidad de Ottawa  

Medical Radiographic X-Ray Machine
TR30N HF
New
Digital Color Doppler Ultrasound System
MS22Plus
Post-Processing Imaging System
DynaCAD Prostate
Ultrasound Needle Guidance System
SonoSite L25

Canales

Medicina Nuclear

ver canal
Imagen: los cristales de perovskita se cultivan en condiciones cuidadosamente controladas a partir de la masa fundida (foto cortesía de Mercouri Kanatzidis/Northwestern University)

Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico

Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más

Imaginología General

ver canal
Imagen: la solución Angio-CT integra los últimos avances en imágenes de intervención (foto cortesía de Canon Medical)

Avanzada solución de angio-TC ofrece nuevas posibilidades terapéuticas

Mantener la precisión y la seguridad en radiología intervencionista es un desafío constante, especialmente a medida que los procedimientos complejos requieren tanto alta precisión... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.