Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Tecnología fotoacústica crea imágenes detalladas para prevenir daño a los nervios durante la cirugía

Por el equipo editorial de MedImaging en español
Actualizado el 08 Sep 2023
Print article
Imagen: Configuración experimental para imágenes fotoacústicas in vivo (Fotografía cortesía de SPIE)
Imagen: Configuración experimental para imágenes fotoacústicas in vivo (Fotografía cortesía de SPIE)

Los procedimientos médicos invasivos, que a menudo implican anestesia local, conllevan un riesgo de lesión a los nervios. Los cirujanos pueden dañar inadvertidamente los nervios durante la cirugía cortándolos, estirándolos o comprimiéndolos, lo que provoca problemas sensoriales y motores duraderos en los pacientes. De manera similar, los pacientes que reciben bloqueos nerviosos u otra anestesia pueden sufrir daños en los nervios si la aguja no se coloca con precisión cerca del nervio periférico objetivo. Para mitigar este riesgo, los investigadores están trabajando en técnicas de imágenes médicas. La ecografía y la resonancia magnética (RMN) pueden ayudar a los cirujanos a localizar los nervios durante un procedimiento. Sin embargo, distinguir los nervios del tejido circundante en las imágenes de ultrasonido es un desafío, y la resonancia magnética es costosa y requiere mucho tiempo.

Un método alternativo prometedor es la obtención de imágenes fotoacústicas multiespectrales, una técnica no invasiva que combina ondas de luz y sonido para crear imágenes detalladas de estructuras y tejidos corporales. Consiste en iluminar la zona objetivo con luz pulsada, provocando un ligero calentamiento y expansión del tejido. Esto genera ondas ultrasónicas detectadas por un detector de ultrasonido. Un equipo de investigación de la Universidad Johns Hopkins (Baltimore, MD, EUA) realizó un estudio que caracteriza la absorción y los perfiles fotoacústicos del tejido nervioso en todo el espectro del infrarrojo cercano (NIR). Su objetivo era identificar las longitudes de onda ideales para la visualización del tejido nervioso en imágenes fotoacústicas, centrándose en la ventana óptica NIR-III (1630-1850 nm). Las vainas de mielina nerviosas contienen lípidos con un pico de absorción característico en este rango.

Sus experimentos con muestras de nervios periféricos de cerdos revelaron un pico de absorción a 1210 nm, que se sitúa en el rango NIR-II pero también está presente en otros lípidos. Sin embargo, cuando se restó la contribución de agua, el tejido nervioso mostró un pico único a 1.725 nm en el rango NIR-III. Las mediciones fotoacústicas de los nervios periféricos de cerdos vivos utilizando imágenes personalizadas confirmaron que el pico de la banda NIR-III distingue eficazmente el tejido nervioso rico en lípidos de otros que contienen agua o carecen de lípidos. Estos hallazgos pueden alentar una mayor exploración del potencial de las imágenes fotoacústicas y mejorar las técnicas de detección y segmentación de nervios en otros métodos de imágenes ópticas.

“Nuestro trabajo es el primero en caracterizar los espectros de absorbancia óptica de muestras frescas de nervios porcinos utilizando un amplio espectro de longitudes de onda, así como el primero en demostrar la visualización in vivo de nervios porcinos sanos y regenerados con imágenes fotoacústicas multiespectrales en la ventana NIR-III”, dijo la Dra. Muyinatu A. Lediju Bell, quien dirigió el equipo de investigación. “Nuestros resultados resaltan la promesa clínica de las imágenes fotoacústicas multiespectrales como técnica intraoperatoria para determinar la presencia de nervios mielinizados o prevenir lesiones nerviosas durante intervenciones médicas, con posibles implicaciones para otras tecnologías basadas en óptica. De este modo, nuestras contribuciones establecen con éxito una nueva base científica para la comunidad de óptica biomédica”.

Enlaces relacionados:
Universidad Johns Hopkins  

Miembro Oro
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Ultrasound Catheter Connector Cover
ACUSON AcuNav
New
Portable Digital X-Ray System
Acuity PDR
Remote Controlled Digital Radiography and Fluoroscopy System
Eco Track-DRF - MARS 50/MARS50+/MARS 65/MARS 80

Print article
Radcal

Canales

RM

ver canal
Imagen: El modelo de inteligencia artificial superó las pruebas clínicas al predecir el progreso de la enfermedad de Alzheimer (foto cortesía de 123RF)

La IA supera a las pruebas clínicas en la predicción del progreso del Alzheimer a partir de imágenes de resonancia magnética

La demencia es un importante desafío de salud mundial, que afecta a más de 55 millones de personas en todo el mundo y cuesta aproximadamente 820 mil millones de dólares al año.... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: Calantic Digital Solutions  es una suite coordinada de soluciones de radiología basadas en IA que tiene como objetivo transformar la radiología (Foto cortesía de Bayer)

Bayer y Rad AI colaboran para expandir el uso de soluciones operativas de radiología de vanguardia basadas en IA

Los datos de imagen constituyen aproximadamente el 90 % de todos los datos médicos, y el volumen de estos datos sigue aumentando, lo que incrementa significativamente la carga de trabajo para los... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.