Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de IA predice con precisión malignidad en ecografía mamaria

Por el equipo editorial de MedImaging en español
Actualizado el 03 Jan 2024
Print article
Imagen: Un modelo de IA predice con precisión la malignidad en el ultrasonido mamario basado en la evaluación de BI-RADS (Fotografía cortesía de 123RF)
Imagen: Un modelo de IA predice con precisión la malignidad en el ultrasonido mamario basado en la evaluación de BI-RADS (Fotografía cortesía de 123RF)

Los sistemas de inteligencia artificial (IA) se integran cada vez más en la ecografía mamaria para reducir potencialmente la carga de trabajo de los radiólogos y mejorar la precisión del diagnóstico. Ahora, un nuevo estudio que evaluó el desempeño de un sistema de inteligencia artificial en la estimación de la categoría BI-RADS para masas mamarias detectadas en ultrasonido ha descubierto que la tecnología puede predecir eficazmente la malignidad.

El estudio, realizado en el Hospital Acibadem Altunizade (Estambul, Turquía), implicó el análisis de 715 masas en 530 pacientes. Involucró tres centros de imágenes mamarias de la misma institución y nueve radiólogos mamarios. Los exámenes de ultrasonido fueron realizados por un radiólogo capturando dos vistas ortogonales de cada lesión. Luego, estas imágenes fueron examinadas retrospectivamente por un segundo radiólogo que no tenía conocimiento de la información clínica del paciente. Un sistema de IA disponible comercialmente también evaluó las imágenes. Los investigadores midieron el nivel de concordancia entre el sistema de IA y los radiólogos, junto con su eficacia diagnóstica, según la evaluación de categorías dicotómicas BI-RADS.

El estudio observó un nivel moderado de concordancia entre el modelo de IA y los radiólogos en la diferenciación de las lesiones benignas y probablemente benignas de las consideradas sospechosas. El modelo de IA determinó que ninguna de las lesiones categorizadas como BI-RADS 2 era maligna, aunque dos clasificadas como BI-RADS 3 fueron confirmadas como malignas. Los investigadores destacaron que considerar las lesiones BI-RADS 2 identificadas por IA como no amenazantes podría permitir a los radiólogos evitar numerosas biopsias innecesarias de lesiones benignas y un número significativo de seguimientos. Además, el algoritmo de IA potencialmente degradó un porcentaje considerable de lesiones BI-RADS 3, 4 y 5 a BI-RADS 2 o 3 y actualizó numerosas lesiones benignas o posiblemente benignas como sospechosas, aunque con un bajo riesgo de malignidad. Los investigadores concluyeron que la IA es prometedora a la hora de predecir con precisión la malignidad y su integración en los flujos de trabajo clínicos podría reducir las biopsias y los seguimientos innecesarios, mejorando así la sostenibilidad de las prácticas sanitarias.

Enlaces relacionados:
Hospital Acibadem Altunizade  

Miembro Oro
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Laptop Ultrasound Scanner
PL-3018
Ultrasound Needle Guide
Ultra-Pro II
Oncology Information System
RayCare

Print article
Radcal

Canales

RM

ver canal
Imagen: Un nuevo estudio ha vinculado el amiloide anormal en la sangre con los cambios cerebrales en la resonancia magnética de difusión (Fotografía cortesía de la Universidad de Florida)

Nuevo método de resonancia magnética detecta enfermedad de Alzheimer antes en personas sin signos clínicos

El método actual para evaluar a los pacientes en busca de enfermedad de Alzheimer implica combinar revisiones de historial médico, exámenes neurológicos, evaluaciones cognitivas... Más

Medicina Nuclear

ver canal
Imagen: Imágenes preoperatorias y postoperatorias de PSMA-PET/CT que muestran la extirpación de ganglios linfáticos pélvicos positivos en el procedimiento quirúrgico radioguiado (Fotografía cortesía de M.G.M. Schilham)

Cirugía radioguiada detecta y elimina con precisión ganglios linfáticos metastásicos en pacientes con cáncer de próstata

En pacientes con diagnóstico reciente de cáncer de próstata, la presencia y ubicación de metástasis en los ganglios linfáticos son fundamentales para guiar las... Más

Imaginología General

ver canal
Imagen: El sistema QTI Breast Acoustic CT es una herramienta de obtención de imágenes mamarias no invasiva, aprobada por la FDA (Fotografía cortesía de QT Imaging)

Tecnología innovadora revoluciona imágenes mamarias

Actualmente, la mamografía es el método principal para detectar el cáncer de mama en una etapa temprana y mejorar los resultados del tratamiento. A pesar de su uso generalizado, la... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.