Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de IA predice con precisión malignidad en ecografía mamaria

Por el equipo editorial de MedImaging en español
Actualizado el 03 Jan 2024
Imagen: Un modelo de IA predice con precisión la malignidad en el ultrasonido mamario basado en la evaluación de BI-RADS (Fotografía cortesía de 123RF)
Imagen: Un modelo de IA predice con precisión la malignidad en el ultrasonido mamario basado en la evaluación de BI-RADS (Fotografía cortesía de 123RF)

Los sistemas de inteligencia artificial (IA) se integran cada vez más en la ecografía mamaria para reducir potencialmente la carga de trabajo de los radiólogos y mejorar la precisión del diagnóstico. Ahora, un nuevo estudio que evaluó el desempeño de un sistema de inteligencia artificial en la estimación de la categoría BI-RADS para masas mamarias detectadas en ultrasonido ha descubierto que la tecnología puede predecir eficazmente la malignidad.

El estudio, realizado en el Hospital Acibadem Altunizade (Estambul, Turquía), implicó el análisis de 715 masas en 530 pacientes. Involucró tres centros de imágenes mamarias de la misma institución y nueve radiólogos mamarios. Los exámenes de ultrasonido fueron realizados por un radiólogo capturando dos vistas ortogonales de cada lesión. Luego, estas imágenes fueron examinadas retrospectivamente por un segundo radiólogo que no tenía conocimiento de la información clínica del paciente. Un sistema de IA disponible comercialmente también evaluó las imágenes. Los investigadores midieron el nivel de concordancia entre el sistema de IA y los radiólogos, junto con su eficacia diagnóstica, según la evaluación de categorías dicotómicas BI-RADS.

El estudio observó un nivel moderado de concordancia entre el modelo de IA y los radiólogos en la diferenciación de las lesiones benignas y probablemente benignas de las consideradas sospechosas. El modelo de IA determinó que ninguna de las lesiones categorizadas como BI-RADS 2 era maligna, aunque dos clasificadas como BI-RADS 3 fueron confirmadas como malignas. Los investigadores destacaron que considerar las lesiones BI-RADS 2 identificadas por IA como no amenazantes podría permitir a los radiólogos evitar numerosas biopsias innecesarias de lesiones benignas y un número significativo de seguimientos. Además, el algoritmo de IA potencialmente degradó un porcentaje considerable de lesiones BI-RADS 3, 4 y 5 a BI-RADS 2 o 3 y actualizó numerosas lesiones benignas o posiblemente benignas como sospechosas, aunque con un bajo riesgo de malignidad. Los investigadores concluyeron que la IA es prometedora a la hora de predecir con precisión la malignidad y su integración en los flujos de trabajo clínicos podría reducir las biopsias y los seguimientos innecesarios, mejorando así la sostenibilidad de las prácticas sanitarias.

Enlaces relacionados:
Hospital Acibadem Altunizade  

Diagnostic Ultrasound System
DC-80A
Computed Tomography System
Aquilion ONE / INSIGHT Edition
Ultrasound Table
Women’s Ultrasound EA Table
High-Precision QA Tool
DEXA Phantom

Canales

Radiografía

ver canal
Imagen: la prueba de detección \"dos por uno\" podría ayudar a detectar las principales causas de muerte de mujeres en todo el mundo (foto cortesía de Shutterstock)

Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... Más

Medicina Nuclear

ver canal
Imagen: los cristales de perovskita se cultivan en condiciones cuidadosamente controladas a partir de la masa fundida (foto cortesía de Mercouri Kanatzidis/Northwestern University)

Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico

Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más

Imaginología General

ver canal
Imagen: Concepto de los SCNP fotosensibles (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste

Las tecnologías de imagen médica enfrentan desafíos constantes para capturar vistas precisas y detalladas de los procesos internos, especialmente en enfermedades como el cáncer,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.