Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Un programa tipo Tetris podría acelerar la detección del cáncer de mama

Por el equipo editorial de MedImaging en español
Actualizado el 03 Oct 2018
Imagen: Cultivo tridimensional de células de cáncer de mama humano, con el ADN coloreado de azul y una proteína en la membrana de la superficie celular de color verde (Fotografía cortesía de Tom Misteli, Ph.D., y de Karen Meaburn, Ph.D/NIH IRP) .
Imagen: Cultivo tridimensional de células de cáncer de mama humano, con el ADN coloreado de azul y una proteína en la membrana de la superficie celular de color verde (Fotografía cortesía de Tom Misteli, Ph.D., y de Karen Meaburn, Ph.D/NIH IRP) .
Los investigadores del Instituto Australiano de Aprendizaje Automático de la Universidad de Adelaida (Adelaida, Australia Meridional, Australia) desarrollan un programa de análisis de imágenes médicas, completamente automatizado, para detectar tumores de mama que utiliza un estilo único para centrarse en el área afectada. Usando la inteligencia artificial (IA), el programa autónomo junto con un examen de resonancia magnética emplea el movimiento transversal y el estilo de un antiguo videojuego para examinar el área de la mama.

El programa se creó aplicando métodos de aprendizaje de refuerzo profundo, una forma de IA que permite a las computadoras y máquinas aprender a realizar tareas complejas sin ser programadas por humanos. Esto permite que el programa analice de forma independiente el tejido mamario. Los investigadores lograron entrenar el programa de computadora utilizando una cantidad relativamente menor de datos, lo que plantea un desafío crítico en las imágenes médicas.

"Así como el antiguo videojuego Tetris manipuló las formas geométricas para adaptarse a un espacio, este programa usa un cuadrado verde para navegar y buscar sobre la imagen del seno para localizar las lesiones. El cuadrado cambia a rojo si se detecta una lesión", dijo el candidato a doctorado de la Universidad de Adelaida, Gabriel Maicas Suso. "Nuestra investigación muestra que este método único es 1,78 veces más rápido para encontrar una lesión que los métodos existentes para detectar el cáncer de mama, y los resultados son igual de exactos".

"Al incorporar el aprendizaje automático en el análisis de imágenes médicas, hemos desarrollado un programa que localiza las lesiones de forma intuitiva y rápida", dijo el Profesor Asociado, Gustavo Carneiro del AIML. "Se necesita más investigación antes de que el programa se pueda usar clínicamente. Nuestro objetivo final es que los radiólogos utilicen este método de detección para complementar, respaldar y ayudar a su importante trabajo de hacer un pronóstico preciso y rápido. La IA tiene un papel importante que jugar en el campo de la imagenología médica; el potencial para usar la inteligencia artificial en este campo no tiene límites".

Enlace relacionado:
Instituto Australiano de Aprendizaje Automático de la Universidad de Adelaida

New
MRI System
nanoScan MRI 3T/7T
High-Precision QA Tool
DEXA Phantom
Diagnostic Ultrasound System
DC-80A
Mammography System (Analog)
MAM VENUS

Canales

Radiografía

ver canal
Imagen: la AI evalúa las mamografías mejor que los radiólogos (foto cortesía de la Universidad de Radboud)

Estrategia híbrida con IA mejora la interpretación de mamografías

Los programas de detección del cáncer de mama dependen en gran medida de la interpretación de las mamografías por parte de radiólogos, un proceso que requiere mucho tiempo... Más

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: la herramienta de diagnóstico podría mejorar las decisiones de diagnóstico y tratamiento para pacientes con infecciones pulmonares crónicas (foto cortesía de SNMMI)

Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar

Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más

Imaginología General

ver canal
Imágenes de resultado positivo en examen de detección de colonografía por TC en un hombre asintomático de 67 años (foto cortesía de Radiology)

La colonografía por TC supera a la prueba de ADN en heces para la detección del cáncer de colon

Dado que el cáncer colorrectal sigue siendo la segunda causa principal de muertes relacionadas con el cáncer a nivel mundial, la detección temprana mediante pruebas de cribado es fundamental... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.