Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Eventos

28 ene 2019 - 01 feb 2019
02 feb 2019 - 07 feb 2019
16 feb 2019 - 21 feb 2019

Un medio de contraste adaptable mejora el diagnóstico con la resonancia magnética

Por el equipo editorial de Medimaging en español
Actualizado el 19 Dec 2018
Print article
Imagen: Las vesículas rellenas de xenón brindan imágenes de resonancia magnética de mayor contraste que con los agentes de contraste convencionales (Fotografía cortesía de Barth van Rossum / FMP).
Imagen: Las vesículas rellenas de xenón brindan imágenes de resonancia magnética de mayor contraste que con los agentes de contraste convencionales (Fotografía cortesía de Barth van Rossum / FMP).
Un estudio reciente afirma que una estructura de proteína adaptable que absorbe el xenón disuelto de forma autorregulable permite obtener imágenes de resonancia magnética (RM) de mayor calidad con menos medio de contraste.

Desarrollado por investigadores de Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP; Berlín, Alemania) y del Instituto de Tecnología de California (Caltech; Pasadena, EUA), el nuevo medio de contraste se basa en estructuras de proteínas huecas nanométricas producidas por las bacterias para regular la profundidad de flotación, similar a una vejiga natatoria miniaturizada en los peces. Estas, así llamadas, “vesículas de gas”, tienen una estructura de pared porosa a través de la que el gas de xenón puede entrar y salir, lo que les permite ajustar su influencia elásticamente sobre el xenón medido.

A diferencia de los medios de contraste convencionales, las vesículas de gas siempre absorben una porción fija del xenón presente en el ambiente. Esta característica se puede aprovechar en los diagnósticos de resonancia magnética, porque se debe usar más gas de xenón para obtener mejores imágenes. Si bien la concentración de los medios de contraste convencionales deberían ajustarse para lograr un cambio en la señal para todos los átomos de xenón, las vesículas de gas se llenan automáticamente con más xenón cuando se coloca a su disposición.

A medida que se absorbe más xenón en las vesículas que con los medios de contraste convencionales, el contraste de la imagen es muchas veces más alto que el ruido de fondo, y la calidad de la imagen mejora significativamente, lo que permite la identificación de marcadores de enfermedades que ocurren en concentraciones relativamente bajas. En estudios con animales, los investigadores pudieron producir imágenes de resonancia magnética con concentraciones de partículas un millón de veces más bajas que las de los medios de contraste empleados actualmente. El estudio fue publicado en la edición de noviembre de 2018 de la revista ACS Nano.

“Necesitamos métodos nuevos y mejorados, en los que la menor cantidad posible de medio de contraste influya lo más posible en la sustancia transmisora de señales, generalmente el agua”, dijo el autor principal Leif Schroeder, PhD, director del grupo de imagenología molecular en el FMP. “Actúan como una especie de globo al que se une una bomba externa. Si el globo es inflado por átomos de xenón que fluyen hacia la vesícula del gas, su tamaño no cambia, pero la presión se aumenta, de una manera similar a lo que sucede en un tubo de neumático de bicicleta”.

La hiperpolarización de los núcleos de los gases nobles (generalmente utilizando láseres) los alinea para que se vuelvan visibles en un examen de resonancia magnética. Para detectar marcadores de enfermedades celulares específicas, deben estar unidos a ellos por un corto tiempo. Los gases utilizados para fines de imágenes médicas incluyen el helio (He), el argón (Ar), el criptón (Kr) y el xenón (Xe). El estado de giro hiperpolarizado existe a temperaturas de giro muy bajas, lo que conduce a una alta magnetización del conjunto de giros, con el resultado de una intensidad de señal de resonancia magnética nuclear muy alta, que vuelve al equilibrio térmico por despolarización.

Enlace relacionado:
Leibniz-Forschungsinstitut für Molekulare Pharmakologie
Instituto de Tecnología de California



Print article

Canales

Ultrasonido

ver canal
Imagen: El aprendizaje profundo y la inteligencia artificial (AI) transforman los exámenes de ultrasonido obstétrico en una experiencia más fácil, más rápida, más consistente y mucho más exacta (Fotografía cortesía de SonoScape).

Una tecnología con IA automatiza el flujo de trabajo del ultrasonido obstétrico

El algoritmo S-fetus de SonoScape Medical (Shenzhen, China), diseñado para el sistema de ultrasonido S60, ha sido diseñado para simplificar un procedimiento de ultrasonido obstétrico estándar reduciéndolo... Más

Medicina Nuclear

ver canal
Imagen: Un estudio nuevo afirma que la radioterapia axilar es una buena opción para tratar el cáncer de mama metastásico (Fotografía cortesía de Getty Images).

La radioterapia en las axilas y la cirugía del GLS muestran resultados comparables

De acuerdo con un estudio nuevo, las pacientes con cáncer de mama en etapa temprana tuvieron tasas de recurrencia y supervivencia similares tanto con la radioterapia (RT) como con la disección de los ganglios... Más

TI en Imaginología

ver canal
Imagen: Un simple portal para pacientes almacena imágenes e informes (Fotografía cortesía de Intelerad).

Un portal centrado en los pacientes facilita el acceso a la imagenología directa

Un portal nuevo de imagenología brinda a los pacientes acceso directo a su historial de exámenes, imágenes e informes en cualquier momento y en cualquier lugar. La plataforma de imágenes en la nube... Más

Industria

ver canal
Imagen: Una herramienta nueva de inteligencia artificial puede predecir la gravedad de los tres síntomas comunes que enfrentan los pacientes con cáncer (Fotografía cortesía de SPL).

Una tecnología nueva de IA señala los síntomas negativos en los pacientes con cáncer

Investigadores de la Universidad de Surrey (Inglaterra, Reino Unido) y de la Universidad de California ({UCSF} San Francisco, CA, EUA) desarrollaron una herramienta nueva de inteligencia artificial (IA),... Más
Copyright © 2000-2019 Globetech Media. All rights reserved.