Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.
11 jun 2020 - 13 jun 2020

Inteligencia artificial es más exacta que los médicos para predecir los ataques cardíacos

Por el equipo editorial de MedImaging en español
Actualizado el 28 May 2019
Print article
Imagen: Un algoritmo de aprendizaje automático entrenado para leer exámenes de imagenología fue más exacto para predecir los ataques cardíacos o la muerte que los médicos expertos (Fotografía cortesía de Shutterstock).
Imagen: Un algoritmo de aprendizaje automático entrenado para leer exámenes de imagenología fue más exacto para predecir los ataques cardíacos o la muerte que los médicos expertos (Fotografía cortesía de Shutterstock).
Investigadores del Centro TEP de Turku (Turku, Finlandia) desarrollaron un algoritmo que “aprendió” cómo interactúan los datos de las imágenes al analizar repetidamente 85 variables en 950 pacientes con resultados conocidos de seis años. Luego, el algoritmo identificó patrones que correlacionaban las variables con la muerte y el ataque cardíaco con más del 90% de exactitud.

Los médicos usan las puntuaciones de riesgo para tomar decisiones sobre el tratamiento, aunque estas puntuaciones se basan solo en unas pocas variables y, a menudo, tienen una exactitud modesta en los pacientes individuales. Mediante la repetición y el ajuste, el aprendizaje automático puede explotar grandes cantidades de datos e identificar patrones complejos que pueden no ser evidentes para los humanos.

Para el estudio, los investigadores reclutaron a 950 pacientes con dolor torácico en quienes realizaron el protocolo habitual del centro para detectar una enfermedad de la arteria coronaria. Un examen de angiografía coronaria por tomografía computarizada (CCTA, por sus siglas en inglés) produjo 58 datos de la presencia de placa coronaria, estrechamiento de vasos y calcificación. A aquellos con exámenes sugestivos de enfermedad les realizaron una tomografía por emisión de positrones (TEP), que produjo 17 variables en el flujo sanguíneo.

Se obtuvieron diez variables clínicas a partir de las historias clínicas, incluyendo sexo, edad, tabaquismo y diabetes. Durante un seguimiento promedio de seis años, hubo 24 ataques cardíacos y 49 muertes por cualquier causa. Las 85 variables se ingresaron en un algoritmo de aprendizaje automático, llamado LogitBoost, que las analizó una y otra vez hasta que encontró la mejor estructura para predecir quién tuvo un ataque cardíaco o murió.

El desempeño predictivo utilizando solo las diez variables clínicas (similar a la práctica clínica actual) fue modesto, con un área bajo la curva (AUC) de 0,65 (donde 1,0 es una prueba perfecta y 0,5 es un resultado aleatorio). Cuando se agregaron los datos de la TEP, el AUC aumentó a 0,69. El desempeño predictivo aumentó significativamente (p = 0,005) cuando se agregaron los datos de la CCTA a los datos clínicos y de la TEP, lo que dio un AUC de 0,82 y una exactitud de más del 90%.

“Nuestro estudio muestra que los patrones de dimensiones muy altas son más útiles que los patrones de una sola dimensión para predecir los resultados en individuos y para eso necesitamos el aprendizaje automático”, dijo el Dr. Luis Eduardo Juárez-Orozco, autor del estudio. “Los médicos ya recopilan mucha información sobre los pacientes, por ejemplo, aquellos con dolor en el pecho. Descubrimos que el aprendizaje automático puede integrar estos datos y predecir con exactitud el riesgo individual. Esto debería permitirnos personalizar el tratamiento y, en última instancia, conducir a mejores resultados para los pacientes”.

Enlace relacionado:
Centro TEP de Turku


Print article
Radcal
CIRS

Canales

Radiografía

ver canal
Imagen: Esquema de un dispositivo para imágenes de rayos X de campo oscuro (Fotografía cortesía de la TUM)

Radiografías pulmonares de bajas dosis facilitan el diagnóstico del coronavirus

Un método novedoso de rayos X que implica una radiación significativamente menor que la tomografía computarizada (TC) puede ayudar a identificar las anomalías en la COVID-19. Desarrollado en la Universidad... Más

RM

ver canal
Imagen: Se deben evitar los exámenes de resonancia magnética en pacientes con COVID-19 (Fotografía cortesía de Shutterstock)

Se debe evitar la toma de exámenes de resonancia magnética en los pacientes con COVID-19

Una nueva declaración de orientación del Colegio Americano de Radiología (ACR; Reston, VA, EUA) recomienda que los radiólogos eviten realizar exámenes de resonancia magnética (MRI) en pacientes diagnosticados... Más

Imaginología General

ver canal
Imagen: El sistema Aquilion Prime SP CT con descontaminación UV-C (Fotografía cortesía de Canon Medical Systems)

Solución de descontaminación facilita la TC en los pacientes con infecciones virales

Una solución de TC desplegable con capacidades de descontaminación rápida puede ayudar a los hospitales a aislar a los pacientes con COVID-19 y descontaminar el sistema para una atención más efectiva.... Más

TI en Imaginología

ver canal
Imagen: El software empresarial uPath proporciona mejores herramientas de patología digital (Fotografía cortesía de Roche).

Un software de patología digital mejora la eficiencia del flujo de trabajo

Una plataforma de software novedosa reduce drásticamente los tiempos de generación de imágenes, integra el análisis automatizado de imágenes y permite un mejor intercambio de casos entre patólogos.... Más
Copyright © 2000-2020 Globetech Media. All rights reserved.