Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Inteligencia artificial es más exacta que los médicos para predecir los ataques cardíacos

Por el equipo editorial de MedImaging en español
Actualizado el 28 May 2019
Print article
Investigadores del Centro TEP de Turku (Turku, Finlandia) desarrollaron un algoritmo que “aprendió” cómo interactúan los datos de las imágenes al analizar repetidamente 85 variables en 950 pacientes con resultados conocidos de seis años. Luego, el algoritmo identificó patrones que correlacionaban las variables con la muerte y el ataque cardíaco con más del 90% de exactitud.

Los médicos usan las puntuaciones de riesgo para tomar decisiones sobre el tratamiento, aunque estas puntuaciones se basan solo en unas pocas variables y, a menudo, tienen una exactitud modesta en los pacientes individuales. Mediante la repetición y el ajuste, el aprendizaje automático puede explotar grandes cantidades de datos e identificar patrones complejos que pueden no ser evidentes para los humanos.

Para el estudio, los investigadores reclutaron a 950 pacientes con dolor torácico en quienes realizaron el protocolo habitual del centro para detectar una enfermedad de la arteria coronaria. Un examen de angiografía coronaria por tomografía computarizada (CCTA, por sus siglas en inglés) produjo 58 datos de la presencia de placa coronaria, estrechamiento de vasos y calcificación. A aquellos con exámenes sugestivos de enfermedad les realizaron una tomografía por emisión de positrones (TEP), que produjo 17 variables en el flujo sanguíneo.

Se obtuvieron diez variables clínicas a partir de las historias clínicas, incluyendo sexo, edad, tabaquismo y diabetes. Durante un seguimiento promedio de seis años, hubo 24 ataques cardíacos y 49 muertes por cualquier causa. Las 85 variables se ingresaron en un algoritmo de aprendizaje automático, llamado LogitBoost, que las analizó una y otra vez hasta que encontró la mejor estructura para predecir quién tuvo un ataque cardíaco o murió.

El desempeño predictivo utilizando solo las diez variables clínicas (similar a la práctica clínica actual) fue modesto, con un área bajo la curva (AUC) de 0,65 (donde 1,0 es una prueba perfecta y 0,5 es un resultado aleatorio). Cuando se agregaron los datos de la TEP, el AUC aumentó a 0,69. El desempeño predictivo aumentó significativamente (p = 0,005) cuando se agregaron los datos de la CCTA a los datos clínicos y de la TEP, lo que dio un AUC de 0,82 y una exactitud de más del 90%.

“Nuestro estudio muestra que los patrones de dimensiones muy altas son más útiles que los patrones de una sola dimensión para predecir los resultados en individuos y para eso necesitamos el aprendizaje automático”, dijo el Dr. Luis Eduardo Juárez-Orozco, autor del estudio. “Los médicos ya recopilan mucha información sobre los pacientes, por ejemplo, aquellos con dolor en el pecho. Descubrimos que el aprendizaje automático puede integrar estos datos y predecir con exactitud el riesgo individual. Esto debería permitirnos personalizar el tratamiento y, en última instancia, conducir a mejores resultados para los pacientes”.

Enlace relacionado:
Centro TEP de Turku

Ultrasound Imaging System
P12 Elite
New
Digital Intelligent Ferromagnetic Detector
Digital Ferromagnetic Detector
Digital Radiographic System
OMNERA 300M
New
Needle Guide Disposable Kit
Verza

Print article

Canales

Radiografía

ver canal
Imagen: la evaluación FFR impulsada por IA es comparable a la evaluación convencional (foto cortesía de 123RF)

Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP

La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más

RM

ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más

Ultrasonido

ver canal
Imagen: la herramienta de ultrasonido pulmonar impulsada por IA superó a los expertos humanos en un 9 % en el diagnóstico de tuberculosis (Adobe Stock)

La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis

A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... Más

Medicina Nuclear

ver canal
Imagen: COX-2 en la materia gris cortical humana (foto cortesía de The Journal of Nuclear Medicine; DOI: https://doi.org/10.2967/jnumed.124.268525)

Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación

La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.