Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de IA para imágenes PET determina respuesta del paciente a tratamientos de tumores cerebrales

Por el equipo editorial de MedImaging en español
Actualizado el 24 Aug 2023
Print article
Imagen: Un modelo de IA puede evaluar los tumores cerebrales en PET (Fotografía cortesía de Freepik)
Imagen: Un modelo de IA puede evaluar los tumores cerebrales en PET (Fotografía cortesía de Freepik)

La evaluación de los cambios en el volumen metabólico tumoral (VMT) mediante exploraciones PET utilizando radiotrazadores específicos como la fluoroetil tirosina (FET) F-18 juega un papel vital en la evaluación de la respuesta al tratamiento en pacientes con tumores cerebrales. Convencionalmente, el VMT se determina a través procesos manuales o semiautomáticos, que no sólo son lentos sino que también pueden variar dependiendo del médico que realiza la tarea. Ahora, un nuevo modelo de IA para imágenes PET podría ayudar enormemente a los médicos a evaluar cómo responden los pacientes a los tratamientos de tumores cerebrales.

Investigadores del Hospital Universitario de Aquisgrán (Aquisgrán, Alemania) demostraron que un modelo de IA basado en aprendizaje profundo puede automatizar la segmentación del VMT en imágenes PET cerebrales, eliminando potencialmente la necesidad de que los médicos humanos preprocesen estas imágenes. El objetivo de su estudio fue crear un método para la segmentación automatizada del VMT y evaluar su eficacia para medir las respuestas al tratamiento en pacientes con glioma. La investigación incluyó una colección de 699 exploraciones FET-PET F-18 de 555 pacientes con tumores cerebrales, obtenidas bien en el momento del diagnóstico inicial o durante visitas de seguimiento posteriores. Médicos experimentados en medicina nuclear primero segmentaron el VMT en estas imágenes, abarcando lesiones con niveles variables de captación del radiotrazador FET F-18.

Luego, el equipo utilizó 476 de estas imágenes para entrenar una red neuronal de IA, denominada "no new U-Net", para realizar la segmentación de VMT. Para evaluar la precisión del modelo, lo aplicaron a un conjunto de datos de imágenes que constaba de 223 exploraciones de 156 pacientes diferentes. De las 205 lesiones que mostraron mayor captación de FET F-18 en este conjunto de datos, el modelo identificó correctamente 189. Curiosamente, el modelo no identificó erróneamente ninguna región anatómica con una mayor captación normal del radiotrazador FET F-18, como en el seno sagital superior, como tumores. El rendimiento del modelo fue bastante notable, logrando una puntuación F1 media del 92 %, una sensibilidad del 93 % y un valor predictivo positivo del 95 % en la detección de lesiones. Una ventaja importante de este modelo es su capacidad para automatizar completamente la segmentación 3D utilizando un solo escaneo FET-PET F-18. Además, puede realizar esta tarea en menos de dos minutos utilizando una unidad de procesamiento de gráficos estándar, sin necesidad de ningún procesamiento previo.

"El hallazgo principal de nuestro estudio es que nuestra red neuronal basada en aprendizaje profundo permite una detección fiable y totalmente automatizada y una segmentación 3D de tumores cerebrales investigados por FET-PET F-18", señalaron los investigadores. "Este hallazgo resalta el valor de la red para la mejora y automatización de la toma de decisiones clínicas basada en la evaluación volumétrica de PET de aminoácidos".

Enlaces relacionados:
Hospital Universitario de Aquisgrán  

Miembro Oro
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Enterprise Imaging & Reporting Solution
Syngo Carbon
New
Digital Radiography Generator
meX+20BT lite
New
Ceiling-Mounted Digital Radiography System
Radiography 5000 C

Print article

Canales

Radiografía

ver canal
Imagen: La detección de cáncer de seno asistido por AI puede reducir las pruebas innecesarias (foto cortesía de Wustl)

Asistencia de IA mejora detección del cáncer de mama al reducir los falsos positivos

Radiólogos suelen detectar un caso de cáncer por cada 200 mamografías revisadas. Sin embargo, estas evaluaciones a menudo dan como resultado falsos positivos, lo que lleva a retiros... Más

RM

ver canal
Imagen: PET/MRI puede clasificar con precisión a los pacientes con cáncer de próstata (foto cortesía de 123RF)

PET/MRI mejora la precisión diagnóstica en pacientes con cáncer de próstata

El Sistema de datos e informes de imágenes de próstata (PI-RADS) es una escala de cinco puntos para evaluar el potencial de cáncer de próstata en imágenes de resonancia... Más

Ultrasonido

ver canal
Imagen: Diagrama esquemático del sistema de administración de fármacos de nanopartículas estimulados por ultrasonido para la terapia de biopelícula (foto cortesía de BIO Integration))

Nueva nanopartícula activada por ultrasonido elimina la biopelícula y la infección bacteriana

Las biopelículas, formadas por bacterias que se agregan en densas comunidades para protegerse contra las duras condiciones ambientales, contribuyen de manera importante a diversas enfermedades infecciosas.... Más

Imaginología General

ver canal
Imagen: El modelo de aprendizaje automático Tyche podría ayudar a capturar información crucial. (Foto cortesía de 123RF)

Nuevo método de IA captura la incertidumbre en imágenes médicas

En el campo de la biomedicina, la segmentación es el proceso de anotar píxeles de una estructura importante en imágenes médicas, como órganos o células. Los modelos de Inteligencia Artificial (IA) se utilizan... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.