Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de IA para imágenes PET determina respuesta del paciente a tratamientos de tumores cerebrales

Por el equipo editorial de MedImaging en español
Actualizado el 24 Aug 2023
Imagen: Un modelo de IA puede evaluar los tumores cerebrales en PET (Fotografía cortesía de Freepik)
Imagen: Un modelo de IA puede evaluar los tumores cerebrales en PET (Fotografía cortesía de Freepik)

La evaluación de los cambios en el volumen metabólico tumoral (VMT) mediante exploraciones PET utilizando radiotrazadores específicos como la fluoroetil tirosina (FET) F-18 juega un papel vital en la evaluación de la respuesta al tratamiento en pacientes con tumores cerebrales. Convencionalmente, el VMT se determina a través procesos manuales o semiautomáticos, que no sólo son lentos sino que también pueden variar dependiendo del médico que realiza la tarea. Ahora, un nuevo modelo de IA para imágenes PET podría ayudar enormemente a los médicos a evaluar cómo responden los pacientes a los tratamientos de tumores cerebrales.

Investigadores del Hospital Universitario de Aquisgrán (Aquisgrán, Alemania) demostraron que un modelo de IA basado en aprendizaje profundo puede automatizar la segmentación del VMT en imágenes PET cerebrales, eliminando potencialmente la necesidad de que los médicos humanos preprocesen estas imágenes. El objetivo de su estudio fue crear un método para la segmentación automatizada del VMT y evaluar su eficacia para medir las respuestas al tratamiento en pacientes con glioma. La investigación incluyó una colección de 699 exploraciones FET-PET F-18 de 555 pacientes con tumores cerebrales, obtenidas bien en el momento del diagnóstico inicial o durante visitas de seguimiento posteriores. Médicos experimentados en medicina nuclear primero segmentaron el VMT en estas imágenes, abarcando lesiones con niveles variables de captación del radiotrazador FET F-18.

Luego, el equipo utilizó 476 de estas imágenes para entrenar una red neuronal de IA, denominada "no new U-Net", para realizar la segmentación de VMT. Para evaluar la precisión del modelo, lo aplicaron a un conjunto de datos de imágenes que constaba de 223 exploraciones de 156 pacientes diferentes. De las 205 lesiones que mostraron mayor captación de FET F-18 en este conjunto de datos, el modelo identificó correctamente 189. Curiosamente, el modelo no identificó erróneamente ninguna región anatómica con una mayor captación normal del radiotrazador FET F-18, como en el seno sagital superior, como tumores. El rendimiento del modelo fue bastante notable, logrando una puntuación F1 media del 92 %, una sensibilidad del 93 % y un valor predictivo positivo del 95 % en la detección de lesiones. Una ventaja importante de este modelo es su capacidad para automatizar completamente la segmentación 3D utilizando un solo escaneo FET-PET F-18. Además, puede realizar esta tarea en menos de dos minutos utilizando una unidad de procesamiento de gráficos estándar, sin necesidad de ningún procesamiento previo.

"El hallazgo principal de nuestro estudio es que nuestra red neuronal basada en aprendizaje profundo permite una detección fiable y totalmente automatizada y una segmentación 3D de tumores cerebrales investigados por FET-PET F-18", señalaron los investigadores. "Este hallazgo resalta el valor de la red para la mejora y automatización de la toma de decisiones clínicas basada en la evaluación volumétrica de PET de aminoácidos".

Enlaces relacionados:
Hospital Universitario de Aquisgrán  

Digital Radiographic System
OMNERA 300M
Diagnostic Ultrasound System
DC-80A
New
Mobile X-Ray System
K4W
X-ray Diagnostic System
FDX Visionary-A

Canales

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Imaginología General

ver canal
Imagen: El Dr. Luciano Sposato (izquierda) y el Dr. Rodrigo Bagur (derecha) revisan la exploración de un paciente (foto cortesía de Rena Panchyshyn/LHSC)

La ampliación de TC detecta coágulos sanguíneos ocultos en pacientes con ictus

Los accidentes cerebrovasculares (ACV) causados por coágulos sanguíneos u otros mecanismos que obstruyen el flujo sanguíneo cerebral representan aproximadamente el 85 % de todos los ACV.... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.