Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Sistema de IA evalúa rápida y automáticamente radiografías de tórax para detectar TB

Por el equipo editorial de MedImaging en español
Actualizado el 13 Sep 2022
Print article
Imagen: Un sistema basado en IA se ha mostrado prometedor en la detección de tuberculosis (Fotografía cortesía de Pexels)
Imagen: Un sistema basado en IA se ha mostrado prometedor en la detección de tuberculosis (Fotografía cortesía de Pexels)

La tuberculosis (TB) es una enfermedad infecciosa de los pulmones que mata a más de un millón de personas en todo el mundo cada año. La pandemia de COVID-19 ha exacerbado el problema, con informes recientes que indican que un 21 % menos de personas recibieron atención por TB en 2020 que en 2019. Casi el 90 % de las infecciones activas de TB ocurren en alrededor de 30 países, muchos con escasos recursos necesarios para abordar este problema de salud pública. La detección rentable de la TB mediante radiografías de tórax e inteligencia artificial (IA) tiene el potencial de mejorar el acceso a la atención médica, particularmente en poblaciones de difícil acceso. Ahora, un sistema de IA que detecta la TB en las radiografías de tórax a un nivel comparable al de los radiólogos puede ayudar a la detección en áreas con recursos limitados de radiólogos.

Los científicos de Google Health AI (Mountain View, CA, EUA) han desarrollado y evaluado un sistema de IA que puede evaluar rápida y automáticamente las radiografías de tórax para detectar TB. El sistema utiliza aprendizaje profundo, un tipo de IA que se puede aplicar para enseñar a la computadora a reconocer y predecir condiciones médicas. Los investigadores desarrollaron el sistema utilizando datos de nueve países. Luego lo probaron en datos de cinco países, cubriendo múltiples países con alta carga de TB, varios entornos clínicos y una amplia gama de razas y etnias. Se utilizaron más de 165.000 imágenes de más de 22.000 pacientes para el desarrollo y las pruebas del modelo.

El análisis con 14 radiólogos internacionales mostró que el método de aprendizaje profundo era comparable a los radiólogos para la determinación de la TB activa en las radiografías de tórax. Las tendencias fueron similares en diferentes subgrupos de pacientes, incluido un conjunto de pruebas de mineros de oro en Sudáfrica, un grupo con una alta prevalencia de TB, en comparación con el público en general. Si investigaciones adicionales respaldan los resultados, el sistema de aprendizaje profundo podría usarse para evaluar automáticamente los resultados de radiografías de tórax en busca de TB. Las personas que dan positivo luego recibirían una prueba de esputo o una prueba de amplificación de ácido nucleico (NAAT). Estas pruebas son relativamente costosas, pero si la IA pudiera filtrar a los pacientes que necesitan la prueba, los beneficios serían extensos. Las simulaciones que utilizan el sistema de aprendizaje profundo para identificar probables radiografías de tórax positivas para TB para la confirmación por NAAT redujeron el costo entre un 40 % y un 80 % por cada paciente con TB positivo detectado.

"Queríamos ver si este sistema predice la TB a la par que los radiólogos, y eso es lo que muestra el estudio", dijo el coautor del estudio, Rory Pilgrim, B.Eng., gerente de productos de Google Health AI. "La IA se desempeñó muy bien con una variedad de pacientes".

"Lo que es especialmente prometedor en este estudio es que observamos una variedad de diferentes conjuntos de datos que reflejaban la amplitud de la presentación de la TB, diferentes equipos y diferentes flujos de trabajo clínicos", dijo el primer autor Sahar Kazemzadeh, BS, ingeniero de software en Google Health. “Descubrimos que este sistema de aprendizaje profundo funciona muy bien con todos ellos con un solo punto operativo que fue preseleccionado en base a un conjunto de datos de desarrollo, algo que otros sistemas de IA de imágenes médicas han encontrado desafiante”.

Enlaces relacionados:
Google Health AI  

Miembro Oro
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Endoscopic Ultrasound Fine Needle Biopsy Device
Acquire
Ultrasound Table
Powered Ultrasound Table-Flat Top
Breast Imaging Workstation
SecurView

Print article
Radcal

Canales

Ultrasonido

ver canal
Imagen: El implante de cráneo experimental puede permitir imágenes de ultrasonido funcional del cerebro (foto cortesía de Todd Patterson)

Imágenes de ultrasonido funcional registran actividad cerebral a través de un implante de cráneo transparente

Las imágenes cerebrales funcionales, que capturan datos de la actividad cerebral midiendo cambios en el flujo sanguíneo o impulsos eléctricos, proporcionan información crucial... Más

Medicina Nuclear

ver canal
Imagen:  Los investigadores han identificado un nuevo biomarcador de imágenes para las respuestas tumorales a la terapia con ICI (foto cortesía de 123RF)

Nuevo biomarcador PET predice el éxito de inmunoterapia con inhibidores de puntos de control

Las inmunoterapias, como los inhibidores de puntos de control (ICI, sus siglas en inglés), han mostrado resultados clínicos prometedores en el tratamiento del melanoma, el cáncer de... Más

Imaginología General

ver canal
Imagen: La imagen HR-PQCT muestra la microarquitectura del hueso trabecular (en verde) y el hueso cortical (en blanco) dentro de la tibia distal (foto cortesía de la Universidad de Wake Forest)

Técnica de imágenes innovadora ayuda a evaluar la pérdida ósea después de la cirugía bariátrica

La cirugía bariátrica proporciona mejoras sustanciales en la salud de las personas con obesidad grave, aunque está relacionada con la reducción de la masa ósea, lo que... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.