Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA predice riesgo de enfermedades cardíacas utilizando una sola radiografía

Por el equipo editorial de MedImaging en español
Actualizado el 01 Dec 2022
Print article
Imagen: Modelo de aprendizaje profundo detecta riesgo de ECV utilizando imágenes de rayos X de tórax (Fotografía cortesía del Hospital General de Massachusetts)
Imagen: Modelo de aprendizaje profundo detecta riesgo de ECV utilizando imágenes de rayos X de tórax (Fotografía cortesía del Hospital General de Massachusetts)

Las guías actuales recomiendan estimar el riesgo a 10 años de eventos cardiovasculares adversos mayores para establecer quién debe recibir una estatina para la prevención primaria. Este riesgo se calcula utilizando la puntuación de riesgo de enfermedad cardiovascular aterosclerótica (ASCVD), un modelo estadístico que considera una serie de variables, que incluyen edad, sexo, raza, presión arterial sistólica, tratamiento de la hipertensión, tabaquismo, diabetes tipo 2 y análisis de sangre. La medicación con estatinas se recomienda para pacientes con un riesgo a 10 años del 7,5 % o superior. Ahora, los investigadores desarrollaron un modelo de aprendizaje profundo que utiliza una sola radiografía de tórax para predecir el riesgo de muerte a 10 años por un ataque cardíaco o un derrame cerebral, derivado de la enfermedad cardiovascular aterosclerótica.

El aprendizaje profundo es un tipo avanzado de inteligencia artificial (IA) que se puede entrenar para buscar imágenes de rayos X para encontrar patrones asociados con enfermedades. Un equipo de investigadores del Hospital General de Massachusetts (Boston, MA, EUA) entrenó un modelo de aprendizaje profundo usando una sola entrada de rayos X de tórax (RxT). Desarrollaron el modelo, conocido como riesgo CXR-CVD, para predecir el riesgo de muerte por enfermedad cardiovascular utilizando 147.497 radiografías de tórax de 40.643 participantes. Los investigadores probaron el modelo utilizando una segunda cohorte independiente de 11.430 pacientes ambulatorios (edad media 60,1 años; 42,9 % hombres) que se sometieron a una radiografía de tórax ambulatoria de rutina y eran potencialmente elegibles para la terapia con estatinas.

De 11.430 pacientes, 1.096, o el 9,6 %, sufrieron un evento cardíaco adverso mayor durante la mediana de seguimiento de 10,3 años. Hubo una asociación significativa entre el riesgo predicho por el modelo de aprendizaje profundo de riesgo CXR-CVD y los eventos cardíacos importantes observados. Los investigadores también compararon el valor pronóstico del modelo con el estándar clínico establecido para decidir la elegibilidad para las estatinas. Esto se pudo calcular en solo 2.401 pacientes (21 %) debido a la falta de datos (p. ej., presión arterial, colesterol) en el registro electrónico. Para este subconjunto de pacientes, el modelo de riesgo de CXR-CVD se desempeñó de manera similar al estándar clínico establecido e incluso proporcionó un valor progresivo. Se necesita investigación adicional, incluido un ensayo aleatorio controlado, para validar el modelo de aprendizaje profundo, que en última instancia podría servir como una herramienta de apoyo a la toma de decisiones para los médicos tratantes.

"Nuestro modelo de aprendizaje profundo ofrece una solución potencial para la detección oportunista basada en la población del riesgo de enfermedad cardiovascular utilizando imágenes de rayos X de tórax existentes", dijo el autor principal del estudio, Jakob Weiss, MD, radiólogo afiliado al Centro de Investigación de Imágenes Cardiovasculares de Hospital General de Massachusetts y el programa de IA en Medicine en el Hospital Brigham and Women's en Boston. "Este tipo de evaluación podría usarse para identificar a las personas que se beneficiarían de la medicación con estatinas pero que actualmente no reciben tratamiento".

"La belleza de este enfoque es que solo necesita una radiografía, que se adquiere millones de veces al día en todo el mundo", dijo el Dr. Weiss. "Basado en una sola imagen de rayos X de tórax existente, nuestro modelo de aprendizaje profundo predice futuros eventos cardiovasculares adversos importantes con un rendimiento similar y un valor incremental al estándar clínico establecido".

"Reconocemos desde hace mucho tiempo que los rayos X capturan información más allá de los hallazgos de diagnóstico tradicionales, pero no hemos utilizado estos datos porque no hemos tenido métodos sólidos y confiables", agregó el Dr. Weiss. "Los avances en IA lo están haciendo posible ahora".

Enlaces relacionados:
Hospital General de Massachusetts  

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
Illuminator
Trimline Basic
Powered Echocardiography Imaging/Ultrasound Table
Powered Echo
Color Doppler Ultrasound System
DCU50

Print article

Canales

RM

ver canal
Imagen:  Un brazalete portátil similar a una joya reduce el ruido de fondo para aumentar drásticamente la potencia de la resonancia magnética (foto cortesía de la Universidad de Boston)

Los metamateriales podrían aumentar la velocidad y precisión de las resonancias magnéticas

La resonancia magnética (RM) ha revolucionado la forma en que los médicos diagnostican y planifican el tratamiento de diversas enfermedades, al permitir la visualización no invasiva... Más

Ultrasonido

ver canal
Imagen: El dispositivo Diadem está diseñado para tratar dolor crónico y la depresión (foto cortesía de la Universidad de Utah)

Dispositivo de ultrasonido estimula no invasivamente regiones profundas del cerebro para tratar el dolor crónico

El dolor sirve como una advertencia biológica vital, pero en muchas enfermedades se distorsiona. Las personas que sufren dolor crónico a menudo enfrentan señales de dolor persistentes... Más

Medicina Nuclear

ver canal
Imagen: PET/ULD CT con LAFOV [18F]MFBG (arriba) y [123I] MIBG gammagrafía con [123I]MIBG con imágenes SPECT/LDCT (abajo) de una niña de 7 semanas con neuroblastoma (foto cortesía del Journal of Nuclear Medicine)

Nueva técnica PET/CT detecta con precisión el neuroblastoma en niños con tiempo de escaneo corto y sin anestesia

El neuroblastoma, el tumor sólido extracraneal más común en niños, tiene una tasa de supervivencia general del 70 %. Tradicionalmente, el procedimiento de escaneo SPECT/CT con... Más

Imaginología General

ver canal
Imagen: Se espera que el dispositivo de neuroimagen vertical amplíe la capacidad de investigar el cerebro en movimiento (foto cortesía de Davidson Chan/WVU)

Dispositivo de neuroimagen permite escaneos cerebrales por PET mientras se camina

Los escáneres tradicionales de tomografía por emisión de positrones (PET) requieren que los pacientes permanezcan quietos durante la toma de imágenes. Esto representa un desafío... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: SONASes un dispositivo de ultrasonido portátil alimentado por batería para la evaluación no invasiva de la perfusión cerebral (foto cortesía de BURL Concepts)

Una colaboración innovadora mejorará la detección del accidente cerebrovascular isquémico

La evaluación del ictus isquémico se ha visto obstaculizada durante mucho tiempo por las limitaciones de las técnicas de diagnóstico por imagen tradicionales, como la tomografía... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.