Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA predice riesgo de enfermedades cardíacas utilizando una sola radiografía

Por el equipo editorial de MedImaging en español
Actualizado el 01 Dec 2022
Print article
Imagen: Modelo de aprendizaje profundo detecta riesgo de ECV utilizando imágenes de rayos X de tórax (Fotografía cortesía del Hospital General de Massachusetts)
Imagen: Modelo de aprendizaje profundo detecta riesgo de ECV utilizando imágenes de rayos X de tórax (Fotografía cortesía del Hospital General de Massachusetts)

Las guías actuales recomiendan estimar el riesgo a 10 años de eventos cardiovasculares adversos mayores para establecer quién debe recibir una estatina para la prevención primaria. Este riesgo se calcula utilizando la puntuación de riesgo de enfermedad cardiovascular aterosclerótica (ASCVD), un modelo estadístico que considera una serie de variables, que incluyen edad, sexo, raza, presión arterial sistólica, tratamiento de la hipertensión, tabaquismo, diabetes tipo 2 y análisis de sangre. La medicación con estatinas se recomienda para pacientes con un riesgo a 10 años del 7,5 % o superior. Ahora, los investigadores desarrollaron un modelo de aprendizaje profundo que utiliza una sola radiografía de tórax para predecir el riesgo de muerte a 10 años por un ataque cardíaco o un derrame cerebral, derivado de la enfermedad cardiovascular aterosclerótica.

El aprendizaje profundo es un tipo avanzado de inteligencia artificial (IA) que se puede entrenar para buscar imágenes de rayos X para encontrar patrones asociados con enfermedades. Un equipo de investigadores del Hospital General de Massachusetts (Boston, MA, EUA) entrenó un modelo de aprendizaje profundo usando una sola entrada de rayos X de tórax (RxT). Desarrollaron el modelo, conocido como riesgo CXR-CVD, para predecir el riesgo de muerte por enfermedad cardiovascular utilizando 147.497 radiografías de tórax de 40.643 participantes. Los investigadores probaron el modelo utilizando una segunda cohorte independiente de 11.430 pacientes ambulatorios (edad media 60,1 años; 42,9 % hombres) que se sometieron a una radiografía de tórax ambulatoria de rutina y eran potencialmente elegibles para la terapia con estatinas.

De 11.430 pacientes, 1.096, o el 9,6 %, sufrieron un evento cardíaco adverso mayor durante la mediana de seguimiento de 10,3 años. Hubo una asociación significativa entre el riesgo predicho por el modelo de aprendizaje profundo de riesgo CXR-CVD y los eventos cardíacos importantes observados. Los investigadores también compararon el valor pronóstico del modelo con el estándar clínico establecido para decidir la elegibilidad para las estatinas. Esto se pudo calcular en solo 2.401 pacientes (21 %) debido a la falta de datos (p. ej., presión arterial, colesterol) en el registro electrónico. Para este subconjunto de pacientes, el modelo de riesgo de CXR-CVD se desempeñó de manera similar al estándar clínico establecido e incluso proporcionó un valor progresivo. Se necesita investigación adicional, incluido un ensayo aleatorio controlado, para validar el modelo de aprendizaje profundo, que en última instancia podría servir como una herramienta de apoyo a la toma de decisiones para los médicos tratantes.

"Nuestro modelo de aprendizaje profundo ofrece una solución potencial para la detección oportunista basada en la población del riesgo de enfermedad cardiovascular utilizando imágenes de rayos X de tórax existentes", dijo el autor principal del estudio, Jakob Weiss, MD, radiólogo afiliado al Centro de Investigación de Imágenes Cardiovasculares de Hospital General de Massachusetts y el programa de IA en Medicine en el Hospital Brigham and Women's en Boston. "Este tipo de evaluación podría usarse para identificar a las personas que se beneficiarían de la medicación con estatinas pero que actualmente no reciben tratamiento".

"La belleza de este enfoque es que solo necesita una radiografía, que se adquiere millones de veces al día en todo el mundo", dijo el Dr. Weiss. "Basado en una sola imagen de rayos X de tórax existente, nuestro modelo de aprendizaje profundo predice futuros eventos cardiovasculares adversos importantes con un rendimiento similar y un valor incremental al estándar clínico establecido".

"Reconocemos desde hace mucho tiempo que los rayos X capturan información más allá de los hallazgos de diagnóstico tradicionales, pero no hemos utilizado estos datos porque no hemos tenido métodos sólidos y confiables", agregó el Dr. Weiss. "Los avances en IA lo están haciendo posible ahora".

Enlaces relacionados:
Hospital General de Massachusetts  

Proveedor de oro
Conductive Gel
Tensive
New
Proveedor de oro
IMRT Thorax Phantom
CIRS Model 002LFC
New
Radiotherapy Software
Node Platform
New
Diagnostic Ultrasound System
DRE Crystal 4P

Print article
Radcal
Sun Nuclear -    Mirion

Canales

RM

ver canal
Imagen: El software de volumetría cerebral AIRAscore ha recibido la autorización 510 (k) de la FDA (Fotografía cortesía de AIRAmed)

Software de evaluación de resonancia magnética cerebral impulsado por IA permite detección temprana de Alzheimer y demencia

Tradicionalmente, la identificación de la enfermedad de Alzheimer y otras formas de demencia ha dependido principalmente de imágenes por resonancia magnética. Sin embargo, los estudios... Más

Ultrasonido

ver canal
Imagen: La aplicación de ultrasonido mejorado por contraste de súper resolución está disponible en el sistema de ultrasonido EPIQ Elite (Fotografía cortesía de Philips)

Nueva aplicación de ultrasonido con contraste mejorado optimiza la confianza diagnóstica de pacientes con cáncer

Para diagnosticar y tratar el cáncer, es fundamental para los proveedores de atención médica comprender la dinámica del flujo sanguíneo que entra y sale de una lesión... Más

Medicina Nuclear

ver canal
Imagen: Un modelo de IA puede evaluar los tumores cerebrales en PET (Fotografía cortesía de Freepik)

Modelo de IA para imágenes PET determina respuesta del paciente a tratamientos de tumores cerebrales

La evaluación de los cambios en el volumen metabólico tumoral (VMT) mediante exploraciones PET utilizando radiotrazadores específicos como la fluoroetil tirosina (FET) F-18 juega un... Más

Imaginología General

ver canal
Imagen: El software de IA mejora los tiempos de tratamiento de trombectomía endovascular para pacientes con accidente cerebrovascular (Fotografía cortesía de 123RF)

IA detecta OGV a partir de angiografías por TC para mejorar tiempos de tratamiento de la trombectomía endovascular en pacientes con accidente cerebrovascular

La oclusión de grandes vasos (OGV) ocurre cuando se bloquea una arteria clave en el cerebro y se considera una forma particularmente grave de accidente cerebrovascular. Se estima que las OGV representan... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: El arco en C móvil Zenition 70 con detector plano (Fotografía cortesía de Philips)

Mercado mundial de arcos en C fijos y móviles impulsado por aumento de procedimientos quirúrgicos

La evolución de la tecnología del arco en C ha sido realmente notable, marcando el comienzo de la era de los arcos en C móviles y mini. Estos avances han brindado a los cirujanos el... Más
Copyright © 2000-2023 Globetech Media. All rights reserved.