Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA en el punto de atención para rayos X de tórax clasifica con precisión radiografías de tórax óptimas y subóptimas

Por el equipo editorial de MedImaging en español
Actualizado el 19 Apr 2023
Imagen: Nuevos modelos de IA son capaces de diferenciar las radiografías de tórax óptimas y subóptimas (Fotografía cortesía de Freepik)
Imagen: Nuevos modelos de IA son capaces de diferenciar las radiografías de tórax óptimas y subóptimas (Fotografía cortesía de Freepik)

Las radiografías de tórax (RxT) son la prueba de imagen más común y representan casi el 40 % de todos los exámenes de imagen. Esta popularidad se debe a su accesibilidad, practicidad, bajo costo y sensibilidad moderada en el diagnóstico de problemas pulmonares, mediastínicos y cardíacos. Sin embargo, existe una variabilidad significativa en la interpretación de RxT entre los radiólogos. Las imágenes de mayor calidad podrían conducir a lecturas más consistentes y confiables, pero las RxT subóptimas pueden dificultar la detección de hallazgos críticos. Ahora, los modelos de inteligencia artificial (IA) entrenados por radiólogos pueden clasificar con precisión las radiografías de tórax óptimas y subóptimas, lo que podría permitir a los radiólogos repetir exploraciones de baja calidad cuando sea necesario.

Los radiólogos del Hospital General de Massachusetts y la Facultad de Medicina de Harvard (Boston, MA, EUA) han desarrollado modelos de IA que pueden distinguir entre RxT óptimas y subóptimas y proporcionar retroalimentación sobre las razones de la clasificación como sububóptima. Esta retroalimentación, que se ofrece al frente del equipo radiográfico, podría provocar adquisiciones repetidas inmediatas cuando sea necesario. Los radiólogos utilizaron una plataforma de creación de herramientas de IA para crear su modelo que permite a los médicos desarrollar modelos de IA sin experiencia previa en ciencias de la información o programación informática. Este software podría ayudar a reducir la variabilidad entre los radiólogos.

El desarrollo del modelo involucró 3.278 RxT de cinco sitios diferentes. Un radiólogo de tórax evaluó las imágenes e identificó las razones de su calidad subóptima. Luego, estas imágenes anonimizadas se cargaron en una aplicación de servidor de IA para capacitación y pruebas. Se evaluó el rendimiento del modelo en función de su área bajo la curva (AUC) para distinguir entre imágenes óptimas y subóptimas. Las razones de la clasificación subóptima incluyeron anatomía faltante, anatomía torácica oscurecida, exposición inadecuada, volumen pulmonar bajo o rotación de pacientes. Las AUC para la precisión en cada categoría oscilaron entre 0,87 y 0,94.

El modelo demostró un rendimiento constante en todos los grupos de edad, sexos y proyecciones radiográficas diversas. Es importante destacar que, según los expertos, la categorización de subóptima no requiere mucho tiempo y se necesita menos de un segundo por radiografía por categoría para clasificar una imagen como óptima o subóptima. El equipo ha sugerido que esto podría acelerar el proceso de repetición, así como optimizar las auditorías manuales, que suelen ser laboriosas y lentas.

“Un proceso automatizado que utiliza los modelos de IA entrenados puede ayudar a rastrear dicha información en poco tiempo y proporcionar retroalimentación específica a gran escala a los tecnólogos y al departamento sobre causas específicas de la clasificación subóptima”, explicó el grupo, y agregó que a largo plazo esta retroalimentación podría reducir las tasas de repetición, ahorrando tiempo, dinero y exposiciones innecesarias a la radiación.

Enlaces relacionados:
Mass General

Post-Processing Imaging System
DynaCAD Prostate
Biopsy Software
Affirm® Contrast
Digital Intelligent Ferromagnetic Detector
Digital Ferromagnetic Detector
Digital Color Doppler Ultrasound System
MS22Plus

Canales

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: los cristales de perovskita se cultivan en condiciones cuidadosamente controladas a partir de la masa fundida (foto cortesía de Mercouri Kanatzidis/Northwestern University)

Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico

Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más

Imaginología General

ver canal
Imagen: Concepto de los SCNP fotosensibles (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste

Las tecnologías de imagen médica enfrentan desafíos constantes para capturar vistas precisas y detalladas de los procesos internos, especialmente en enfermedades como el cáncer,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.