Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA en el punto de atención para rayos X de tórax clasifica con precisión radiografías de tórax óptimas y subóptimas

Por el equipo editorial de MedImaging en español
Actualizado el 19 Apr 2023
Print article
Imagen: Nuevos modelos de IA son capaces de diferenciar las radiografías de tórax óptimas y subóptimas (Fotografía cortesía de Freepik)
Imagen: Nuevos modelos de IA son capaces de diferenciar las radiografías de tórax óptimas y subóptimas (Fotografía cortesía de Freepik)

Las radiografías de tórax (RxT) son la prueba de imagen más común y representan casi el 40 % de todos los exámenes de imagen. Esta popularidad se debe a su accesibilidad, practicidad, bajo costo y sensibilidad moderada en el diagnóstico de problemas pulmonares, mediastínicos y cardíacos. Sin embargo, existe una variabilidad significativa en la interpretación de RxT entre los radiólogos. Las imágenes de mayor calidad podrían conducir a lecturas más consistentes y confiables, pero las RxT subóptimas pueden dificultar la detección de hallazgos críticos. Ahora, los modelos de inteligencia artificial (IA) entrenados por radiólogos pueden clasificar con precisión las radiografías de tórax óptimas y subóptimas, lo que podría permitir a los radiólogos repetir exploraciones de baja calidad cuando sea necesario.

Los radiólogos del Hospital General de Massachusetts y la Facultad de Medicina de Harvard (Boston, MA, EUA) han desarrollado modelos de IA que pueden distinguir entre RxT óptimas y subóptimas y proporcionar retroalimentación sobre las razones de la clasificación como sububóptima. Esta retroalimentación, que se ofrece al frente del equipo radiográfico, podría provocar adquisiciones repetidas inmediatas cuando sea necesario. Los radiólogos utilizaron una plataforma de creación de herramientas de IA para crear su modelo que permite a los médicos desarrollar modelos de IA sin experiencia previa en ciencias de la información o programación informática. Este software podría ayudar a reducir la variabilidad entre los radiólogos.

El desarrollo del modelo involucró 3.278 RxT de cinco sitios diferentes. Un radiólogo de tórax evaluó las imágenes e identificó las razones de su calidad subóptima. Luego, estas imágenes anonimizadas se cargaron en una aplicación de servidor de IA para capacitación y pruebas. Se evaluó el rendimiento del modelo en función de su área bajo la curva (AUC) para distinguir entre imágenes óptimas y subóptimas. Las razones de la clasificación subóptima incluyeron anatomía faltante, anatomía torácica oscurecida, exposición inadecuada, volumen pulmonar bajo o rotación de pacientes. Las AUC para la precisión en cada categoría oscilaron entre 0,87 y 0,94.

El modelo demostró un rendimiento constante en todos los grupos de edad, sexos y proyecciones radiográficas diversas. Es importante destacar que, según los expertos, la categorización de subóptima no requiere mucho tiempo y se necesita menos de un segundo por radiografía por categoría para clasificar una imagen como óptima o subóptima. El equipo ha sugerido que esto podría acelerar el proceso de repetición, así como optimizar las auditorías manuales, que suelen ser laboriosas y lentas.

“Un proceso automatizado que utiliza los modelos de IA entrenados puede ayudar a rastrear dicha información en poco tiempo y proporcionar retroalimentación específica a gran escala a los tecnólogos y al departamento sobre causas específicas de la clasificación subóptima”, explicó el grupo, y agregó que a largo plazo esta retroalimentación podría reducir las tasas de repetición, ahorrando tiempo, dinero y exposiciones innecesarias a la radiación.

Enlaces relacionados:
Mass General

New
Proveedor de oro
IMRT Thorax Phantom
CIRS Model 002LFC
New
Proveedor de oro
Ultrasound System
FUTUS LE
Color Doppler Ultrasonic Scanner
TBC-6000N
New
Ultrasound Diagnostic System
CMS600P2PLUS

Print article
Sun Nuclear -    Mirion
Radcal

Canales

RM

ver canal
Imagen: El software de volumetría cerebral AIRAscore ha recibido la autorización 510 (k) de la FDA (Fotografía cortesía de AIRAmed)

Software de evaluación de resonancia magnética cerebral impulsado por IA permite detección temprana de Alzheimer y demencia

Tradicionalmente, la identificación de la enfermedad de Alzheimer y otras formas de demencia ha dependido principalmente de imágenes por resonancia magnética. Sin embargo, los estudios... Más

Ultrasonido

ver canal
Imagen: La aplicación de ultrasonido mejorado por contraste de súper resolución está disponible en el sistema de ultrasonido EPIQ Elite (Fotografía cortesía de Philips)

Nueva aplicación de ultrasonido con contraste mejorado optimiza la confianza diagnóstica de pacientes con cáncer

Para diagnosticar y tratar el cáncer, es fundamental para los proveedores de atención médica comprender la dinámica del flujo sanguíneo que entra y sale de una lesión... Más

Medicina Nuclear

ver canal
Imagen: Un modelo de IA puede evaluar los tumores cerebrales en PET (Fotografía cortesía de Freepik)

Modelo de IA para imágenes PET determina respuesta del paciente a tratamientos de tumores cerebrales

La evaluación de los cambios en el volumen metabólico tumoral (VMT) mediante exploraciones PET utilizando radiotrazadores específicos como la fluoroetil tirosina (FET) F-18 juega un... Más

Imaginología General

ver canal
Imagen: El software de IA mejora los tiempos de tratamiento de trombectomía endovascular para pacientes con accidente cerebrovascular (Fotografía cortesía de 123RF)

IA detecta OGV a partir de angiografías por TC para mejorar tiempos de tratamiento de la trombectomía endovascular en pacientes con accidente cerebrovascular

La oclusión de grandes vasos (OGV) ocurre cuando se bloquea una arteria clave en el cerebro y se considera una forma particularmente grave de accidente cerebrovascular. Se estima que las OGV representan... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: El arco en C móvil Zenition 70 con detector plano (Fotografía cortesía de Philips)

Mercado mundial de arcos en C fijos y móviles impulsado por aumento de procedimientos quirúrgicos

La evolución de la tecnología del arco en C ha sido realmente notable, marcando el comienzo de la era de los arcos en C móviles y mini. Estos avances han brindado a los cirujanos el... Más
Copyright © 2000-2023 Globetech Media. All rights reserved.