Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA de alta precisión mejora desempeño de radiólogos en detección de cánceres de pulmón en radiografías de tórax

Por el equipo editorial de MedImaging en español
Actualizado el 05 Jul 2023
Print article
Imagen: Un algoritmo de IA de alta precisión mejora la detección del cáncer de pulmón (Fotografía cortesía de la Universidad Nacional de Seúl)
Imagen: Un algoritmo de IA de alta precisión mejora la detección del cáncer de pulmón (Fotografía cortesía de la Universidad Nacional de Seúl)

Si bien la progresión de la inteligencia artificial (IA) en el diagnóstico por imágenes dentro del campo médico ha sido rápida, los factores que afectan las conclusiones diagnósticas de los radiólogos en la interpretación de imágenes asistida por IA no se han explorado lo suficiente. Un nuevo estudio profundizó en estos factores influyentes, especialmente en relación con la detección de nódulos pulmonares malignos durante la lectura de radiografías de tórax asistida por IA. El estudio encontró que un algoritmo de IA con alta precisión diagnóstica puede mejorar el desempeño del radiólogo en la identificación de cánceres de pulmón en radiografías de tórax y aumentar la aceptación humana de las recomendaciones de IA.

En el estudio retrospectivo realizado por investigadores de la Universidad Nacional de Seúl (Seúl, Corea), 30 lectores, incluidos 20 radiólogos torácicos experimentados y 10 residentes de radiología, evaluaron 120 radiografías de tórax sin asistencia de IA. Estas radiografías incluyeron 60 imágenes de pacientes con cáncer de pulmón y 60 imágenes de control. Para la segunda sesión, se reevaluaron las mismas imágenes con la ayuda de una IA de alta o baja precisión. A los lectores no se les informó que se utilizaron dos algoritmos de IA diferentes en el estudio. La aplicación de una IA de alta precisión demostró una mejora más significativa en el desempeño de detección de los lectores en comparación con una IA de baja precisión. Además, la IA de alta precisión condujo a alteraciones más frecuentes en las determinaciones de los lectores, un fenómeno conocido como susceptibilidad. En comparación con la sesión de lectura inicial, los lectores ayudados por la IA de alta precisión diagnóstica en la segunda sesión mostraron una mayor sensibilidad por lesión (0,63 frente a 0,53) y especificidad (0,94 frente a 0,88). Por el contrario, los lectores que usaron IA de baja precisión diagnóstica no demostraron ninguna mejora entre las dos sesiones de lectura en términos de estas métricas.

Los hallazgos resaltan la importancia de emplear IA de alto desempeño en el diagnóstico. Sin embargo, los investigadores han señalado que la definición de "IA de alto desempeño diagnóstico" puede ser específica del contexto, variando en función de la tarea y del entorno clínico. Por ejemplo, un modelo de IA capaz de detectar todas las anomalías en las radiografías de tórax puede parecer ideal, pero puede no ser valioso para reducir la carga de trabajo en las pruebas de detección masivas para tuberculosis pulmonar. Los investigadores tienen como objetivo ampliar su investigación de la colaboración humano-IA a otras anomalías en las radiografías de tórax y las imágenes de tomografía computarizada en el futuro.

"Nuestro estudio sugiere que la IA puede ayudar a los radiólogos, pero solo cuando el desempeño diagnóstico de la IA iguala o supera el del lector humano", dijo el autor principal del estudio, Chang Min Park, MD, Ph.D., del Departamento de Radiología y el Instituto de Medicina de Radiación en la Facultad de Medicina de la Universidad Nacional de Seúl. "Por lo tanto, nuestro estudio sugiere que el uso clínicamente apropiado de la IA requiere tanto el desarrollo de modelos de IA de alto desempeño para determinadas tareas como consideraciones sobre el entorno clínico relevante al que se aplicará esa IA".

Enlaces relacionados:
Universidad Nacional de Seúl

New
Proveedor de oro
Electrode Solution and Skin Prep
Signaspray
Proveedor de oro
Ultrasound System
FUTUS LE
Fetal Doppler
Sonicaid FD1 / FD3
New
Ferromagnetic Hand-Held Detector
FerrAlert Target Scanner

Print article
Radcal

Canales

RM

ver canal
Imagen: Los investigadores están utilizando radioterapia guiada por resonancia magnética que combina resonancia magnética diaria con radioterapia (Fotografía cortesía de Sylvester)

Técnica de IA rastrea automáticamente tumores en grandes conjuntos de datos de resonancia magnética para guiar tratamiento del glioblastoma en tiempo real

El tratamiento del glioblastoma, un cáncer cerebral agresivo y prevalente, implica el uso de radioterapia guiada por imágenes de tomografía computarizada. Si bien este método... Más

Ultrasonido

ver canal
Imagen: El nuevo parche de ultrasonido puede medir qué tan llena está la vejiga (Fotografía cortesía del MIT)

Parche de ultrasonido diseñado para monitorear la salud de la vejiga y riñones podría permitir diagnóstico más temprano del cáncer

La disfunción de la vejiga y los problemas de salud relacionados afectan a millones de personas en todo el mundo. Monitorear el volumen de la vejiga es crucial para evaluar la salud de los riñones.... Más

Medicina Nuclear

ver canal
Imagen: Un novedoso radiotrazador PET facilita la detección temprana y no invasiva de la EII (Fotografía cortesía de Karmanos)

Nuevo radiotrazador PET ayuda a detectar de forma temprana y no invasiva la enfermedad inflamatoria intestinal

La enfermedad inflamatoria intestinal (EII), que incluye la enfermedad de Crohn y la colitis ulcerosa, es una afección inflamatoria del tracto gastrointestinal que padecen aproximadamente a siete... Más

Imaginología General

ver canal
Imagen: La inteligencia artificial predice las respuestas a la terapia para el cáncer de ovario (Fotografía cortesía de 123RF)

Modelo de IA combina pruebas de sangre y análisis de TC para predecir respuesta a terapia en pacientes con cáncer de ovario

El cáncer de ovario afecta anualmente a miles de mujeres y muchos diagnósticos se producen en etapas avanzadas debido a síntomas tempranos sutiles. El carcinoma de ovario seroso de... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: Los asistentes pueden descubrir productos y tecnología innovadores en las Exhibiciones Técnicas de RSNA 2023 (Fotografía cortesía de RSNA)

Exposiciones técnicas RSNA 2023 ofrecerá innovaciones en IA, impresión 3D y más

La 109.ª Asamblea Científica y Reunión Anual de la Sociedad Radiológica de América del Norte (RSNA, Oak Brook, IL, EUA), que se celebrará en Chicago del 26 al 30... Más
Copyright © 2000-2023 Globetech Media. All rights reserved.