Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de IA combina radiografías de tórax con datos del paciente para mejorar diagnóstico

Por el equipo editorial de MedImaging en español
Actualizado el 11 Oct 2023
Print article
Imagen: El modelo de IA tiene potencial como ayuda para los radiólogos en un momento de creciente cargas de trabajo (Fotografía cortesía de 123RF)
Imagen: El modelo de IA tiene potencial como ayuda para los radiólogos en un momento de creciente cargas de trabajo (Fotografía cortesía de 123RF)

Los profesionales de la salud utilizan una combinación de datos de imágenes y datos no procedentes de imágenes para diagnosticar enfermedades. Si bien las soluciones existentes basadas en inteligencia artificial (IA) suelen estar diseñadas para funcionar con un solo tipo de datos, las redes neuronales basadas en transformadores ofrecen la capacidad de fusionar ambos tipos para realizar diagnósticos más precisos. Originalmente destinados a procesar el lenguaje humano, estos modelos transformadores han inspirado modelos de lenguaje importantes como ChatGPT y Bard de Google. A diferencia de sus contrapartes de redes neuronales convolucionales, que se centran principalmente en datos de imágenes, las redes de transformadores tienen una aplicación más general. Emplean lo que se conoce como mecanismo de atención, lo que permite a la red comprender las relaciones dentro de sus datos de entrada. Esta característica es particularmente adecuada para campos médicos donde el diagnóstico a menudo implica combinar diversos tipos de datos, como información del paciente y resultados de imágenes. Ahora, un transformador modelo de IA recientemente desarrollado combina datos clínicos de pacientes con información de imágenes para mejorar la precisión del diagnóstico en las radiografías de tórax.

Investigadores del Hospital Universitario de Aquisgrán (Aquisgrán, Alemania) han desarrollado un modelo de transformador específicamente para uso médico. Entrenaron el sistema utilizando datos de imágenes y datos no provenientes de imágenes de dos bases de datos, que en conjunto incluyen registros de más de 82.000 pacientes. A este modelo se le ha enseñado a identificar hasta 25 condiciones diferentes utilizando cualquier tipo de datos o una combinación de ambos, lo que se conoce como datos multimodales. En comparación con otros modelos existentes, este nuevo enfoque multimodal demostró un mejor desempeño diagnóstico en todos los ámbitos. Según el equipo de investigación, este modelo no sólo tiene el potencial de ayudar a los proveedores de atención médica que enfrentan cargas de trabajo cada vez mayores, sino que también podría servir como modelo para integrar sin problemas grandes conjuntos de datos.

"Dado que el volumen de datos de los pacientes aumenta constantemente a lo largo de los años y el tiempo que los médicos pueden dedicar a cada paciente es limitado, podría resultar cada vez más difícil para los médicos interpretar toda la información disponible de manera efectiva", dijo el autor principal del estudio, Firas Khader, M.Sc., estudiante de posgrado del Hospital Universitario de Aquisgrán. "Los modelos multimodales prometen ayudar a los médicos en su diagnóstico al facilitar la agregación de los datos disponibles en un diagnóstico preciso".

Enlaces relacionados:
Hospital Universitario de Aquisgrán

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Multi-Use Ultrasound Table
Clinton
New
40/80-Slice CT System
uCT 528
New
Ultrasound Imaging System
P12 Elite

Print article

Canales

RM

ver canal
Imagen:  Una trampa molecular para metales exóticos promete mejores diagnósticos y un desarrollo más rápido de fármacos (foto cortesía de Tomáš Belloň/IOCB Praga)

Nuevos compuestos beneficiarán a los pacientes con enfermedad renal que no pueden someterse a resonancia magnética

Los lantánidos desempeñan un papel fundamental en los campos biomédicos, como agentes de contraste para la resonancia magnética y en radioterapia. Sin embargo, mejorar su fuerza... Más

Ultrasonido

ver canal
Imagen: Este pequeño parche cutáneo elástico utiliza ultrasonido para monitorear continuamente la presión arterial en las zonas más profundas del cuerpo (foto cortesía de David Baillot/UC San Diego Jacobs School of Engineering)

Parche ultrasónico portátil permite el monitoreo continuo de la presión arterial

Las mediciones tradicionales de la presión arterial mediante un brazalete proporcionan una lectura única e instantánea, que puede pasar por alto patrones importantes en las fluctuaciones... Más

Medicina Nuclear

ver canal
Imagen: Ejemplo de análisis de IA de imágenes PET/TC (foto cortesía de Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

Análisis de IA de imágenes PET/TC predice efectos secundarios de la inmunoterapia en cáncer de pulmón

La inmunoterapia ha avanzado significativamente en el tratamiento del cáncer de pulmón primario, pero a veces puede provocar un efecto secundario grave conocido como enfermedad pulmonar intersticial.... Más

Imaginología General

ver canal
Imagen transaxial de una tomografía computarizada de detección de cáncer de pulmón que muestra calcio en las tres arterias coronarias (foto cortesía de CMaj doi/10.1503/cmaj.231602)

Las tomografías pulmonares detectan enfermedades cardíacas en pacientes sin síntomas cardíacos

La tomografía computarizada (TC) de tórax con dosis bajas es un método estándar que se utiliza para la detección del cáncer de pulmón. Ahora, una nueva investigación ha demostrado que estas tomografías... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.