Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Un modelo de IA predice el riesgo de cáncer de mama a 5 años a partir de mamografías

Por el equipo editorial de MedImaging en español
Actualizado el 09 May 2024
Imagen: El modelo de IA podría ser un valioso complemento de los radiólogos humanos en los diagnósticos de cáncer de mama y la predicción de riesgos (foto cortesía de 123RF)
Imagen: El modelo de IA podría ser un valioso complemento de los radiólogos humanos en los diagnósticos de cáncer de mama y la predicción de riesgos (foto cortesía de 123RF)

Se predice que aproximadamente el 13 % de las mujeres estadounidenses, o una de cada ocho, desarrollarán cáncer de mama invasivo a lo largo de su vida, y 1 de cada 39 mujeres (3 %) sucumbirá a la enfermedad, según la Sociedad Estadounidense del Cáncer. La mamografía sigue siendo una herramienta vital para la detección temprana del cáncer de mama y ofrece la ventana de tratamiento más eficaz. Las citas periódicas para mamografías pueden reducir significativamente los riesgos de mortalidad por cáncer de mama. No obstante, el desafío sigue siendo predecir con precisión qué personas contraerán cáncer de mama únicamente mediante métodos de detección. Mirai, un algoritmo avanzado de aprendizaje profundo, ha sido reconocido por su capacidad para predecir el riesgo de cáncer de mama, aunque su proceso de toma de decisiones sigue sin explicarse en gran medida, lo que genera riesgos de dependencia excesiva y diagnósticos erróneos por parte de los radiólogos. Ahora, los investigadores han desarrollado un modelo de inteligencia artificial (IA) innovador e interpretable capaz de predecir el riesgo de cáncer de mama a cinco años basándose en el análisis de mamografías.

En el estudio, investigadores de la Universidad de Duke (Durham, Carolina del Norte, EUA) realizaron un estudio comparativo utilizando su modelo de aprendizaje profundo recientemente ideado, denominado AsymMirai, frente a las evaluaciones de riesgo de cáncer de mama de uno a cinco años de Mirai. AsymMirai hereda su "frontal" de aprendizaje profundo de Mirai, pero incorpora un módulo interpretable llamado disimilitud bilateral local, que se centra en el contraste de tejido entre los senos izquierdo y derecho. Este estudio analizó 210.067 mamografías de 81.824 pacientes del conjunto de datos de imágenes Emory Breast (EMBED) que abarca desde enero de 2013 hasta diciembre de 2020, empleando los algoritmos Mirai y AsymMirai.

Los hallazgos revelaron que el modelo simplificado de aprendizaje profundo, AsymMirai, casi igualaba el rendimiento del algoritmo Mirai de última generación en la predicción del riesgo de cáncer de mama de uno a cinco años. Además, este estudio destacó la importancia de la asimetría bilateral como indicador clínico vital, lo que sugiere su potencial como un nuevo marcador de imágenes para evaluar el riesgo de cáncer de mama. La transparencia detrás del proceso de toma de decisiones de AsymMirai lo convierte en una herramienta invaluable para los radiólogos, ya que mejora la precisión del diagnóstico del cáncer de mama y la predicción de riesgos.

"Podemos, con una precisión sorprendentemente alta, predecir si una mujer desarrollará cáncer en los próximos 1 a 5 años basándose únicamente en diferencias localizadas entre el tejido mamario izquierdo y derecho", afirmó el autor principal del estudio, Jon Donnelly, BS, doctorando del Departamento de Ciencias de la Computación de la Universidad de Duke. "Esto podría tener un impacto público porque, en un futuro no muy lejano, podría afectar la frecuencia con la que las mujeres reciben mamografías".

Enlaces relacionados:
Universidad de Duke

Half Apron
Demi
Digital Color Doppler Ultrasound System
MS22Plus
Mobile X-Ray System
K4W
Mammography System (Analog)
MAM VENUS

Canales

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: los cristales de perovskita se cultivan en condiciones cuidadosamente controladas a partir de la masa fundida (foto cortesía de Mercouri Kanatzidis/Northwestern University)

Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico

Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más

Imaginología General

ver canal
Imagen: Concepto de los SCNP fotosensibles (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste

Las tecnologías de imagen médica enfrentan desafíos constantes para capturar vistas precisas y detalladas de los procesos internos, especialmente en enfermedades como el cáncer,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.