Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de RM con IA clasifica los tumores intracraneales comunes

Por el equipo editorial de MedImaging en español
Actualizado el 15 Sep 2021
Print article
Imagen: Los colores de los mapas de color de GradCAM muestran la predicción de tumores (Fotografía cortesía de WUSTL)
Imagen: Los colores de los mapas de color de GradCAM muestran la predicción de tumores (Fotografía cortesía de WUSTL)
Un estudio nuevo afirma que un modelo 3D de inteligencia artificial (IA) es capaz de clasificar un tumor cerebral como uno de los seis tipos comunes a partir de un solo examen de resonancia magnética (RM).

Para desarrollar el algoritmo GradCAM, investigadores de la Universidad de Washington (WUSTL; St. Louis, MO, EUA), utilizaron 2.105 exámenes de resonancia magnética ponderadas en T1 de cuatro conjuntos de datos disponibles públicamente, divididos en capacitación (1.396), interna (361) y conjuntos de datos externos (348). Se entrenó una red neuronal convolucional (CNN) para discriminar entre exámenes sanos y aquellos con tumores, clasificados por tipo (glioma de alto grado, glioma de bajo grado, metástasis cerebrales, meningioma, adenoma hipofisario y neuroma acústico). A continuación, se evaluó el desempeño del modelo y se trazaron mapas de características para visualizar la atención de la red.

Los resultados de las pruebas internas mostraron que GradCAM logró una exactitud del 93,35% en siete clases de imágenes (una clase saludable y seis clases de tumores). Las sensibilidades variaron del 91% al 100% y el valor predictivo positivo (VPP) varió del 85% al 100%. El valor predictivo negativo (VPN) osciló entre el 98% y el 100% en todas las clases. La atención de la red se superpuso con las áreas tumorales para todos los tipos de tumores. Para el conjunto de datos de la prueba externa, que incluyó solo dos tipos de tumores (glioma de alto grado y glioma de bajo grado), GradCAM tuvo una exactitud del 91,95%. El estudio fue publicado el 11 de agosto de 2021 en la revista Radiology: Artificial Intelligence.

“Estos resultados sugieren que el aprendizaje profundo es un método prometedor para la clasificación y evaluación automatizadas de tumores cerebrales. El modelo logró una alta exactitud en un conjunto de datos heterogéneo y mostró excelentes capacidades de generalización en datos de prueba invisibles”, dijo el autor principal, Satrajit Chakrabarty, MSc, del departamento de ingeniería eléctrica y de sistemas. “Esta red es el primer paso hacia el desarrollo de un flujo de trabajo de radiología aumentado con inteligencia artificial que puede respaldar la interpretación de imágenes al proporcionar información cuantitativa y estadísticas”.

El aprendizaje profundo es parte de una familia más amplia de métodos de aprendizaje automático de IA basados en representaciones de datos de aprendizaje, a diferencia de los algoritmos específicos de tareas. Se trata de algoritmos de CNN que utilizan una cascada de muchas capas de unidades de procesamiento no lineales para la extracción, conversión y transformación de características, y cada capa sucesiva utiliza la salida de la capa anterior como entrada para formar una representación jerárquica.

Enlace relacionado:
Universidad de Washington

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
40/80-Slice CT System
uCT 528
New
Portable Color Doppler Ultrasound System
S5000
New
Multi-Use Ultrasound Table
Clinton

Print article
Radcal

Canales

Radiografía

ver canal
Imagen: El prototipo del escáner TC elimina la necesidad de compresión física de la mama (foto cortesía de Quion Lowe y Lisa Dahm/U of A Cancer Center)

Nueva tecnología de detección de cáncer de mama podría ofrecer una alternativa superior a la mamografía

El cáncer de mama representa el 15,5 % de los nuevos casos de cáncer y el 7 % de las muertes relacionadas con el cáncer en los Estados Unidos. Aproximadamente el 13,1 % de las mujeres... Más

Ultrasonido

ver canal
Imagen: Los científicos han destacado el potencial de los ultrasonidos para tratar afecciones de salud complejas que afectan al cerebro (foto cortesía de la Universidad de Plymouth)

La ecografía puede identificar el origen de trastornos cerebrales antes del tratamiento

Durante muchos años, los profesionales de la salud de todo el mundo han recurrido a la ecografía para monitorear el crecimiento de los fetos y evaluar la salud de los órganos internos. Sin embargo, la... Más

Medicina Nuclear

ver canal
Imagen: Los nuevos agentes de contraste se dirigen a dos proteínas implicadas en la osteoartritis y se pueden visualizar mediante un escáner de TC con conteo de fotones (foto cortesía de Pan Lab)

Nueva técnica de TC de conteo de fotones diagnostica la osteoartritis antes del desarrollo de los síntomas

La obtención de imágenes por rayos X ha evolucionado significativamente desde su introducción en 1895. Esta técnica es conocida por capturar imágenes rápidamente, lo que la hace ideal para situaciones... Más

Imaginología General

ver canal
Imagen: Los fumadores empedernidos pueden beneficiarse de la detección del cáncer de pulmón mediante TC de baja dosis (foto cortesía de 123RF)

Detección del cáncer de pulmón mediante TC de dosis baja puede beneficiar a los fumadores empedernidos

El cáncer de pulmón a menudo se diagnostica en una etapa tardía, con solo entre una quinta y una sexta parte de los pacientes sobreviviendo cinco años después del diagnóstico. Un nuevo informe sugiere... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen:La asociación tiene como objetivo ayudar a acelerar el acceso a tratamientos que salvan vidas (Foto cortesía de Philips)

Philips y Medtronic se asocian para el cuidado de accidentes cerebrovasculares

Un accidente cerebrovascular (ACV) es típicamente un incidente agudo causado principalmente por una obstrucción en un vaso sanguíneo del cerebro, lo cual interrumpe el suministro adecuado... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.