Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Nueva investigación busca comprender por qué la IA de aprendizaje profundo puede producir imágenes de RM precisas

Por el equipo editorial de MedImaging en español
Actualizado el 13 Feb 2022
Imagen: un estudio examina por qué la IA produce imágenes de resonancia magnética precisas (Fotografía cortesía de Pexels)
Imagen: un estudio examina por qué la IA produce imágenes de resonancia magnética precisas (Fotografía cortesía de Pexels)

Una nueva investigación comienza a explicar cómo es que los algoritmos de aprendizaje profundo crean imágenes precisas, sin un conjunto de datos completo.

Investigadores de la Universidad de Washington en St. Louis (St. Louis, MO, EUA) han trazado un camino hacia un marco teórico claro para describir cómo las redes neuronales profundas eliminan el ruido y los artefactos visuales para crear imágenes precisas sin un conjunto completo de datos de tecnologías como máquinas de RM. La velocidad de recopilación de datos en muchos tipos de tecnologías de imágenes, incluida la resonancia magnética, depende de la cantidad de muestras tomadas por la máquina. Cuando la cantidad de muestras recolectadas es pequeña, se pueden usar redes neuronales profundas para eliminar el ruido resultante y los artefactos visuales. La tecnología funciona muy bien, aunque no existe un marco teórico estándar, ninguna teoría completa, para describir por qué funciona.

En un documento presentado en la conferencia NeurIPS a fines de 2021, los investigadores establecieron un camino hacia un marco claro. Sus hallazgos prueban, con algunas limitaciones, que una red neuronal profunda puede obtener una imagen precisa a partir de muy pocas muestras si la imagen es del tipo que la red puede representar. Según los investigadores, el hallazgo es un punto de partida hacia una comprensión sólida de por qué la IA de aprendizaje profundo puede producir imágenes precisas. También tiene el potencial de ayudar a determinar la forma más eficiente de recolectar muestras y aún así obtener una imagen precisa.

Enlaces relacionados:

Universidad de Washington en St. Louis

Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
Half Apron
Demi
New
Miembro Plata
X-Ray QA Device
Accu-Gold+ Touch Pro
New
MRI System
nanoScan MRI 3T/7T

Canales

Ultrasonido

ver canal
Imagen: la exploración mamaria automatizada tarda menos de un minuto y produce imágenes 3D claras impulsadas por IA (foto cortesía de la University at Buffalo)

Sistema de imágenes mamarias indoloro puede realizar una exploración del cáncer en un minuto

El cáncer de mama es una de las principales causas de muerte en mujeres a nivel mundial, y la detección temprana es clave para mejorar los resultados. Los métodos tradicionales, como la mamografía y el... Más

Medicina Nuclear

ver canal
Imagen: la herramienta de diagnóstico podría mejorar las decisiones de diagnóstico y tratamiento para pacientes con infecciones pulmonares crónicas (foto cortesía de SNMMI)

Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar

Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más

Imaginología General

ver canal
Imágenes de resultado positivo en examen de detección de colonografía por TC en un hombre asintomático de 67 años (foto cortesía de Radiology)

La colonografía por TC supera a la prueba de ADN en heces para la detección del cáncer de colon

Dado que el cáncer colorrectal sigue siendo la segunda causa principal de muertes relacionadas con el cáncer a nivel mundial, la detección temprana mediante pruebas de cribado es fundamental... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.