Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Algoritmo detecta enfermedad de Alzheimer a partir de imágenes de RM con precisión de casi 100 %

Por el equipo editorial de MedImaging en español
Actualizado el 15 Mar 2022
Imagen: Algoritmo detecta la enfermedad de Alzheimer a partir de imágenes de RM (Fotografía cortesía de KTU)
Imagen: Algoritmo detecta la enfermedad de Alzheimer a partir de imágenes de RM (Fotografía cortesía de KTU)

La enfermedad de Alzheimer (EA) es una de las principales causas de muerte en el mundo. Los pacientes con EA a menudo experimentan pérdida de memoria y deterioro cognitivo debido al deterioro y la muerte de las células nerviosas del cerebro. Por lo general, para diagnosticar esta enfermedad se debe realizar una evaluación psiquiátrica, se debe evaluar la memoria y las habilidades para resolver problemas, o se deben realizar varios escáneres cerebrales, incluida la resonancia magnética (RM). La detección de una etapa temprana de la EA es una tarea especialmente difícil. Ahora, un algoritmo mejorado que puede detectar la EA a partir de imágenes de RM ha logrado una precisión superior al 98 % en un conjunto de datos de prueba para detectar la enfermedad neurodegenerativa mediante la mejora de un modelo de red neuronal.

Para facilitar el proceso de diagnóstico de EA, investigadores de la Universidad Tecnológica de Kaunas (KTU, Kaunas, Lituania) desarrollaron un método de aprendizaje profundo para detectar signos tempranos de EA a partir de imágenes de RM. El modelo siguió la idea original de su estudio anterior, pero utilizó un algoritmo modificado y una red más amplia para lograr resultados más adaptables. Los últimos estudios han demostrado que las redes neuronales convolucionales (CNN) preentrenadas pueden diagnosticar con precisión enfermedades cognitivas a partir de imágenes de resonancia magnética cerebral. El estudio anterior de los investigadores de KTU se basó en la modificación de la red ResNet18, pero esta vez investigaron una variante modificada de la red DensNet201, que tiene una mejor optimización de parámetros.

Para el estudio se utilizó una colección que consta de imágenes de escáneres cerebrales de 125 sujetos del conjunto de datos de la Iniciativa de Neuroimagen de la Enfermedad de Alzheimer (ADNI). Las imágenes se analizaron en términos de enfermedad de Alzheimer, deterioro cognitivo leve y demencia. El conjunto de datos utilizado en la investigación es abierto y se actualiza constantemente con las últimas imágenes de pacientes con EA, por lo que los resultados del estudio están actualizados y son relevantes. Además del uso de una red adicional y un conjunto de datos ADNI, el estudio difiere de investigaciones anteriores al usar un mecanismo de peso diferente y emplear un mapa de activación de clase de gradiente modificado. Es un paso adelante hacia la aplicación práctica porque el modelo pronto podrá marcar las áreas afectadas del cerebro. Según los investigadores, en el futuro se podrían agregar más variables al estudio para acelerar el proceso de diagnóstico.

“Usando el conjunto de datos de ADNI en constante aumento, el algoritmo se está preparando para reconocer los síntomas de la enfermedad en varias imágenes y se vuelve menos sensible a una fuente de datos específica. No es una revolución, pero ciertamente una evolución”, dijo Rytis Maskeliūnas, investigador del Departamento de Ingeniería Multimedia de KTU. “Pronto podríamos usar esta investigación en campos médicos. Nuestro objetivo es crear un modelo que detecte los síntomas de la EA en el cerebro y marque el área afectada en la pantalla de la computadora, ayudando al profesional médico a examinar la imagen. Entonces, al incluir nuevos parámetros y conjuntos de datos más amplios, estamos mejorando este modelo. En el futuro, planeamos usar marcadores biológicos y otros métodos de escaneo cerebral para una mayor eficiencia de diagnóstico y una mejor adaptabilidad”.
 

Enlaces relacionados:
Universidad Tecnológica de Kaunas

New
Pocket Fetal Doppler
CONTEC10C/CL
Computed Tomography System
Aquilion ONE / INSIGHT Edition
Portable Color Doppler Ultrasound Scanner
DCU10
3T MRI Scanner
MAGNETOM Cima.X

Canales

Ultrasonido

ver canal
Imagen: el ultrasonido focalizado puede detener el crecimiento de lesiones cerebrales debilitantes (Foto cortesía de Nature Biomedical Engineering; doi.org/10.1038/s41551-025-01390-z)

Nueva técnica sin incisiones detiene el crecimiento de lesiones cerebrales debilitantes

Las malformaciones cavernosas cerebrales (MCC), también conocidas como cavernomas, son agrupaciones anómalas de vasos sanguíneos que pueden formarse en el cerebro, la médula... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

Imaginología General

ver canal
Imagen: El cinturón de TC por ultrasonido podría facilitar el seguimiento de pacientes con afecciones cardíacas y pulmonares (foto cortesía de la Universidad de Bath)

Dispositivo portátil pionero ofrece una alternativa revolucionaria a las tomografías computarizadas

Actualmente, los pacientes con afecciones como insuficiencia cardíaca, neumonía o dificultad respiratoria suelen requerir múltiples procedimientos de diagnóstico por imagen... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.