Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Nueva técnica de reconstrucción de imágenes combina ciencia de datos con aprendizaje automático para resonancias magnéticas más rápidas

Por el equipo editorial de MedImaging en español
Actualizado el 20 Sep 2022
Print article
Imagen: Una nueva investigación cierra la brecha entre los métodos tradicionales y de aprendizaje profundo (Fotografía cortesía de la Universidad de Minnesota)
Imagen: Una nueva investigación cierra la brecha entre los métodos tradicionales y de aprendizaje profundo (Fotografía cortesía de la Universidad de Minnesota)

Durante la última década, los científicos han estado haciendo que la resonancia magnética nuclear (RMN) sea más rápida utilizando una técnica llamada detección comprimida, que utiliza la idea de que las imágenes se pueden comprimir en tamaños más pequeños, similar a comprimir un archivo .jpeg en una computadora. Más recientemente, los investigadores han estado averiguando el uso del aprendizaje profundo, un tipo de aprendizaje automático, para acelerar la reconstrucción de imágenes de resonancia magnética. En lugar de capturar todas las frecuencias durante el procedimiento de resonancia magnética, este proceso omite frecuencias y utiliza un algoritmo de aprendizaje automático entrenado para predecir los resultados y llenar esos vacíos.

Muchos estudios han demostrado que el aprendizaje profundo es mejor que la detección comprimida tradicional por un amplio margen. Sin embargo, existen algunas preocupaciones con el uso del aprendizaje profundo; por ejemplo, tener datos de entrenamiento insuficientes podría crear un sesgo en el algoritmo que podría hacer que malinterprete los resultados de la resonancia magnética. Ahora, utilizando una combinación de herramientas modernas de ciencia de datos e ideas de aprendizaje automático, los investigadores han encontrado una manera de ajustar el método de compresión tradicional para que sea casi tan de alta calidad como el aprendizaje profundo. Este hallazgo de científicos e ingenieros de la Universidad de Minnesota (Minneapolis, MN, EUA) proporciona una nueva dirección de investigación para el campo de la reconstrucción de resonancia magnética. Puede mejorar el rendimiento de las técnicas de reconstrucción de resonancia magnética tradicionales, lo que permite resonancias magnéticas más rápidas para mejorar la atención médica.

“Las resonancias magnéticas toman mucho tiempo porque los datos se adquieren de manera secuencial. Tienes que llenar el espacio de frecuencia de tu imagen de manera sucesiva”, explicó Mehmet Akcakaya, profesor asociado de Jim y Sara Anderson en el Departamento de Ingeniería Eléctrica e Informática de la Universidad de Minnesota. “Queremos hacer que las resonancias magnéticas sean más rápidas para que los pacientes estén allí por menos tiempo y para que podamos aumentar la eficiencia en el sistema de salud”.

“Lo que estamos diciendo es que hay mucha expectación en torno al aprendizaje profundo en las resonancias magnéticas, pero tal vez esa brecha entre los métodos nuevos y tradicionales no es tan grande como se informó anteriormente”, dijo Akcakaya. “Descubrimos que si sajustas los métodos clásicos, pueden funcionar muy bien. Entonces, tal vez deberíamos volver y mirar los métodos clásicos y ver si podemos obtener mejores resultados. También hay una gran cantidad de investigaciones excelentes en torno al aprendizaje profundo, pero estamos tratando de mirar ambos lados de la imagen para ver dónde podemos encontrar el mejor rendimiento, las garantías teóricas y la estabilidad”.

Enlaces relacionados:
Universidad de Minnesota  

Miembro Oro
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Digital Radiography Acquisition Software
VXvue with PureImpact
New
Portable X-Ray Unit
AJEX240H
New
Thyroid Shield
Standard Thyroid Shield

Print article

Canales

Radiografía

ver canal
Imagen: Saige-DX es un sistema de IA categórico personalizado diseñado para ayudar en la detección del cáncer de mama (Fotografía cortesía de DeepHealth)

IA ayuda a radiólogos generales a lograr un rendimiento de nivel de especialista en interpretación de mamografías

El cáncer de mama, que afecta a una de cada ocho mujeres a lo largo de su vida, se vuelve mucho más tratable cuando se detecta a tiempo. La tasa de supervivencia relativa a cinco años... Más

Medicina Nuclear

ver canal
Imagen: La técnica de imágenes PET puede detectar de manera no invasiva la inflamación activa antes de que surjan síntomas clínicos (Fotografía cortesía de 123RF)

Nuevo trazador PET detecta artritis inflamatoria antes de que aparezcan síntomas

La artritis reumatoide, la forma más común de artritis inflamatoria, afecta a 18 millones de personas en todo el mundo. Es una enfermedad autoinmune compleja caracterizada por inflamación... Más

Imaginología General

ver canal
Imagen: La imagen fotoacústica del PACTER produce imágenes 3D de la sangre fluyendo (Fotografía cortesía de Yide Zhang)

Nueva tecnología muestra imágenes del flujo sanguíneo en tiempo real

Comprender la dinámica del flujo sanguíneo, o hemodinámica, proporciona información fundamental sobre diversas enfermedades vasculares. La información sobre factores... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.