Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Nueva técnica de reconstrucción de imágenes combina ciencia de datos con aprendizaje automático para resonancias magnéticas más rápidas

Por el equipo editorial de MedImaging en español
Actualizado el 20 Sep 2022
Imagen: Una nueva investigación cierra la brecha entre los métodos tradicionales y de aprendizaje profundo (Fotografía cortesía de la Universidad de Minnesota)
Imagen: Una nueva investigación cierra la brecha entre los métodos tradicionales y de aprendizaje profundo (Fotografía cortesía de la Universidad de Minnesota)

Durante la última década, los científicos han estado haciendo que la resonancia magnética nuclear (RMN) sea más rápida utilizando una técnica llamada detección comprimida, que utiliza la idea de que las imágenes se pueden comprimir en tamaños más pequeños, similar a comprimir un archivo .jpeg en una computadora. Más recientemente, los investigadores han estado averiguando el uso del aprendizaje profundo, un tipo de aprendizaje automático, para acelerar la reconstrucción de imágenes de resonancia magnética. En lugar de capturar todas las frecuencias durante el procedimiento de resonancia magnética, este proceso omite frecuencias y utiliza un algoritmo de aprendizaje automático entrenado para predecir los resultados y llenar esos vacíos.

Muchos estudios han demostrado que el aprendizaje profundo es mejor que la detección comprimida tradicional por un amplio margen. Sin embargo, existen algunas preocupaciones con el uso del aprendizaje profundo; por ejemplo, tener datos de entrenamiento insuficientes podría crear un sesgo en el algoritmo que podría hacer que malinterprete los resultados de la resonancia magnética. Ahora, utilizando una combinación de herramientas modernas de ciencia de datos e ideas de aprendizaje automático, los investigadores han encontrado una manera de ajustar el método de compresión tradicional para que sea casi tan de alta calidad como el aprendizaje profundo. Este hallazgo de científicos e ingenieros de la Universidad de Minnesota (Minneapolis, MN, EUA) proporciona una nueva dirección de investigación para el campo de la reconstrucción de resonancia magnética. Puede mejorar el rendimiento de las técnicas de reconstrucción de resonancia magnética tradicionales, lo que permite resonancias magnéticas más rápidas para mejorar la atención médica.

“Las resonancias magnéticas toman mucho tiempo porque los datos se adquieren de manera secuencial. Tienes que llenar el espacio de frecuencia de tu imagen de manera sucesiva”, explicó Mehmet Akcakaya, profesor asociado de Jim y Sara Anderson en el Departamento de Ingeniería Eléctrica e Informática de la Universidad de Minnesota. “Queremos hacer que las resonancias magnéticas sean más rápidas para que los pacientes estén allí por menos tiempo y para que podamos aumentar la eficiencia en el sistema de salud”.

“Lo que estamos diciendo es que hay mucha expectación en torno al aprendizaje profundo en las resonancias magnéticas, pero tal vez esa brecha entre los métodos nuevos y tradicionales no es tan grande como se informó anteriormente”, dijo Akcakaya. “Descubrimos que si sajustas los métodos clásicos, pueden funcionar muy bien. Entonces, tal vez deberíamos volver y mirar los métodos clásicos y ver si podemos obtener mejores resultados. También hay una gran cantidad de investigaciones excelentes en torno al aprendizaje profundo, pero estamos tratando de mirar ambos lados de la imagen para ver dónde podemos encontrar el mejor rendimiento, las garantías teóricas y la estabilidad”.

Enlaces relacionados:
Universidad de Minnesota  

X-ray Diagnostic System
FDX Visionary-A
Biopsy Software
Affirm® Contrast
Digital Radiographic System
OMNERA 300M
Pocket Fetal Doppler
CONTEC10C/CL

Canales

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: la herramienta de diagnóstico podría mejorar las decisiones de diagnóstico y tratamiento para pacientes con infecciones pulmonares crónicas (foto cortesía de SNMMI)

Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar

Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más

Imaginología General

ver canal
Imagen: El Dr. Luciano Sposato (izquierda) y el Dr. Rodrigo Bagur (derecha) revisan la exploración de un paciente (foto cortesía de Rena Panchyshyn/LHSC)

La ampliación de TC detecta coágulos sanguíneos ocultos en pacientes con ictus

Los accidentes cerebrovasculares (ACV) causados por coágulos sanguíneos u otros mecanismos que obstruyen el flujo sanguíneo cerebral representan aproximadamente el 85 % de todos los ACV.... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.