Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Parker Laboratories

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.
30 ene 2023 - 02 feb 2023

Nueva técnica de reconstrucción de imágenes combina ciencia de datos con aprendizaje automático para resonancias magnéticas más rápidas

Por el equipo editorial de MedImaging en español
Actualizado el 20 Sep 2022
Print article
Imagen: Una nueva investigación cierra la brecha entre los métodos tradicionales y de aprendizaje profundo (Fotografía cortesía de la Universidad de Minnesota)
Imagen: Una nueva investigación cierra la brecha entre los métodos tradicionales y de aprendizaje profundo (Fotografía cortesía de la Universidad de Minnesota)

Durante la última década, los científicos han estado haciendo que la resonancia magnética nuclear (RMN) sea más rápida utilizando una técnica llamada detección comprimida, que utiliza la idea de que las imágenes se pueden comprimir en tamaños más pequeños, similar a comprimir un archivo .jpeg en una computadora. Más recientemente, los investigadores han estado averiguando el uso del aprendizaje profundo, un tipo de aprendizaje automático, para acelerar la reconstrucción de imágenes de resonancia magnética. En lugar de capturar todas las frecuencias durante el procedimiento de resonancia magnética, este proceso omite frecuencias y utiliza un algoritmo de aprendizaje automático entrenado para predecir los resultados y llenar esos vacíos.

Muchos estudios han demostrado que el aprendizaje profundo es mejor que la detección comprimida tradicional por un amplio margen. Sin embargo, existen algunas preocupaciones con el uso del aprendizaje profundo; por ejemplo, tener datos de entrenamiento insuficientes podría crear un sesgo en el algoritmo que podría hacer que malinterprete los resultados de la resonancia magnética. Ahora, utilizando una combinación de herramientas modernas de ciencia de datos e ideas de aprendizaje automático, los investigadores han encontrado una manera de ajustar el método de compresión tradicional para que sea casi tan de alta calidad como el aprendizaje profundo. Este hallazgo de científicos e ingenieros de la Universidad de Minnesota (Minneapolis, MN, EUA) proporciona una nueva dirección de investigación para el campo de la reconstrucción de resonancia magnética. Puede mejorar el rendimiento de las técnicas de reconstrucción de resonancia magnética tradicionales, lo que permite resonancias magnéticas más rápidas para mejorar la atención médica.

“Las resonancias magnéticas toman mucho tiempo porque los datos se adquieren de manera secuencial. Tienes que llenar el espacio de frecuencia de tu imagen de manera sucesiva”, explicó Mehmet Akcakaya, profesor asociado de Jim y Sara Anderson en el Departamento de Ingeniería Eléctrica e Informática de la Universidad de Minnesota. “Queremos hacer que las resonancias magnéticas sean más rápidas para que los pacientes estén allí por menos tiempo y para que podamos aumentar la eficiencia en el sistema de salud”.

“Lo que estamos diciendo es que hay mucha expectación en torno al aprendizaje profundo en las resonancias magnéticas, pero tal vez esa brecha entre los métodos nuevos y tradicionales no es tan grande como se informó anteriormente”, dijo Akcakaya. “Descubrimos que si sajustas los métodos clásicos, pueden funcionar muy bien. Entonces, tal vez deberíamos volver y mirar los métodos clásicos y ver si podemos obtener mejores resultados. También hay una gran cantidad de investigaciones excelentes en torno al aprendizaje profundo, pero estamos tratando de mirar ambos lados de la imagen para ver dónde podemos encontrar el mejor rendimiento, las garantías teóricas y la estabilidad”.

Enlaces relacionados:
Universidad de Minnesota  

New
Proveedor de oro
Premium Ultrasound Scanner
ARIETTA 850
New
Handheld POC Ultrasound
P09
New
Handheld Ultrasound Machine
SonoEye P3
New
PACS System
Clario SmartWorklist

Print article
Radcal
CIRS -  MIRION

Canales

Radiografía

ver canal
Los investigadores usaron IA para clasificar a los pacientes con dolor en el pecho (Fotografía cortesía de Pexels)

Primer modelo de IA de aprendizaje profundo clasifica pacientes con dolor torácico mediante rayos X

El síndrome de dolor torácico agudo puede implicar opresión, ardor u otras molestias en el pecho o un dolor intenso que se extiende a la espalda, el cuello, los hombros, los brazos... Más

Ultrasonido

ver canal
Imagen: El parche de ultrasonido portátil rastrea la presión arterial en una arteria o vena profunda (Fotografía cortesía de Chonghe Wang/Nature Biomedical Engineering)

Parche de ultrasonido portátil del tamaño de una estampilla proporciona imágenes cardíacas sobre la marcha

La presión arterial central, la presión en los vasos sanguíneos centrales, envía sangre directamente desde el corazón a otros órganos vitales del cuerpo y es diferente... Más

Medicina Nuclear

ver canal
Imagen: El seguimiento del tratamiento con radiación en tiempo real promete una terapia contra el cáncer más segura y efectiva (Fotografía cortesía de Pexels)

Imágenes en 3D en tiempo real brindan visión única de los rayos X que golpean el interior del cuerpo durante la radioterapia

La radiación se usa en el tratamiento de cientos de miles de pacientes con cáncer cada año, bombardeando un área del cuerpo con ondas y partículas de alta energía,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2023 Globetech Media. All rights reserved.