Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Analizan datos de resonancia magnética mediante aprendizaje automático para predecir progresión de tumor cerebral

Por el equipo editorial de MedImaging en español
Actualizado el 17 Jan 2023
Los investigadores han utilizado datos de resonancia magnética para personalizar aún más la medicina contra el cáncer (Fotografía cortesía de Pexels)
Los investigadores han utilizado datos de resonancia magnética para personalizar aún más la medicina contra el cáncer (Fotografía cortesía de Pexels)

El glioblastoma multiforme (GBM), un cáncer cerebral que tiene una tasa de supervivencia promedio de solo un año, puede ser difícil de tratar debido a su núcleo altamente denso, rápido crecimiento y ubicación. A los médicos les resulta difícil estimar de forma rápida y precisa la difusividad y la tasa de proliferación de estos tumores en un paciente individual. Ahora, los investigadores han creado un modelo computacional que utiliza datos de resonancia magnética para predecir con mayor precisión el crecimiento de estos tumores cerebrales mortales.

Investigadores de la Universidad de Waterloo (Waterloo, ON, Canadá) analizaron datos de resonancia magnética de varios pacientes de GBM utilizando el aprendizaje automático para predecir mejor la progresión del cáncer. El equipo analizó dos conjuntos de resonancias magnéticas de cada uno de los cinco pacientes con GBM que se sometieron a resonancias magnéticas extensas, esperaron durante meses y luego recibieron otro conjunto de resonancias magnéticas. Dado que estos pacientes optaron por no recibir ningún tratamiento o intervención durante este tiempo, los investigadores tuvieron una oportunidad única de examinar cómo crece el GBM cuando no se controla, mediante el análisis de sus resonancias magnéticas.

Usando un modelo de aprendizaje profundo, los investigadores convirtieron los datos de resonancia magnética en estimaciones de parámetros específicos del paciente que informan un modelo predictivo para el crecimiento de GBM. Aplicaron esta técnica a los tumores de los pacientes y sintéticos, de los que se conocían las características reales, lo que les permitió validar el modelo. Los científicos ahora tienen un buen modelo de cómo crece GBM sin tratamiento y ahora ampliarán el modelo para incluir el impacto del tratamiento en los tumores. El conjunto de datos luego crecería de un puñado de resonancias magnéticas a miles. Según los investigadores, el acceso a los datos de resonancia magnética y la asociación entre matemáticos y médicos pueden tener un impacto significativo en los pacientes en el futuro.

“La integración del análisis cuantitativo en el cuidado de la salud es el futuro”, dijo Cameron Meaney, candidato a doctorado en Matemáticas Aplicadas e investigador principal del estudio.

40/80-Slice CT System
uCT 528
Digital X-Ray Detector Panel
Acuity G4
Ultrasound Table
Women’s Ultrasound EA Table
Computed Tomography System
Aquilion ONE / INSIGHT Edition

Canales

Radiografía

ver canal
Imagen: un algoritmo de aprendizaje profundo detecta los niveles de calcio en la arteria coronaria en tomografías computarizadas de tórax (foto cortesía de Adobe Stock)

IA detecta enfermedades cardíacas ocultas en TC de tórax existentes

El calcio en la arteria coronaria (CAC) es un indicador importante del riesgo cardiovascular, pero su evaluación suele requerir una tomografía computarizada (TC) especializada (gated) que... Más

Ultrasonido

ver canal
Imagen: el nuevo dispositivo implantable para el tratamiento del dolor crónico es pequeño y flexible (foto cortesía de The Zhou Lab at USC)

Dispositivo inalámbrico para el manejo del dolor crónico reduce la necesidad de analgésicos y cirugía

El dolor crónico afecta a millones de personas en todo el mundo, lo que a menudo provoca discapacidad a largo plazo y dependencia de opioides, los cuales conllevan riesgos importantes de efectos... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

Imaginología General

ver canal
Imágenes de resultado positivo en examen de detección de colonografía por TC en un hombre asintomático de 67 años (foto cortesía de Radiology)

La colonografía por TC supera a la prueba de ADN en heces para la detección del cáncer de colon

Dado que el cáncer colorrectal sigue siendo la segunda causa principal de muertes relacionadas con el cáncer a nivel mundial, la detección temprana mediante pruebas de cribado es fundamental... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.