Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Aprendizaje automático ayuda al diagnóstico y pronóstico del cáncer de próstata mediante resonancia magnética

Por el equipo editorial de MedImaging en español
Actualizado el 29 Mar 2023
Print article
Imagen: Una nueva investigación aprovecha el poder del aprendizaje automático en las imágenes de cáncer de próstata (Fotografía cortesía del Sistema de Salud de UMiami)
Imagen: Una nueva investigación aprovecha el poder del aprendizaje automático en las imágenes de cáncer de próstata (Fotografía cortesía del Sistema de Salud de UMiami)

La resonancia magnética (RM) convencional es una herramienta confiable para el pronóstico, el diagnóstico, la vigilancia activa y la reducción de la necesidad de procedimientos de biopsia en pacientes con cáncer de próstata de bajo riesgo. La integración de datos de código abierto con modelos de aprendizaje automático ha creado nuevas oportunidades para estudiar la progresión y regresión de enfermedades, particularmente en el campo médico. Sin embargo, la incorporación efectiva del aprendizaje automático en la atención al paciente plantea varios desafíos, como la optimización de los enfoques de aprendizaje automático para cánceres específicos, garantizar la especificidad adecuada de los datos de entrenamiento para una afección médica en particular y más. En este contexto, las redes adversariales generativas (GAN) se están explorando como una posible solución para generar datos sintéticos de alta calidad que representen con precisión la variabilidad clínica de una afección y se puedan aplicar a una variedad de tecnologías de imágenes, incluidas PET, TC, RM, ecografía y radiografías del cerebro, el abdomen y el tórax. Sin embargo, aunque ha habido cierto éxito, el uso de modelos GAN actualmente es limitado cuando se trata de representar con precisión la heterogeneidad de enfermedades complejas como el cáncer de próstata.

Un equipo de investigadores traslacionales del Sistema de Salud de la Universidad de Miami (Miami, FL, EUA) está liderando el camino para mejorar las herramientas GAN para la integración con herramientas de diagnóstico y pronóstico en la investigación del cáncer de próstata. Al requerir menos datos y seguimientos de pacientes, GAN tiene el potencial de revolucionar los modelos de aprendizaje automático y reducir los costos de atención médica y la incomodidad del paciente asociada con las consultas de seguimiento repetidas. El objetivo es utilizar las capacidades de aprendizaje automático de GAN para generar imágenes digitales que aprenden de imágenes de resonancia magnética anteriores y parámetros clínicos, y predicen la progresión de la enfermedad o los patrones de regresión.

El equipo de investigación realizó un estudio utilizando resonancias magnéticas de próstata y patología digital de múltiples fuentes como datos de entrenamiento para desarrollar un modelo GAN. Con el aprendizaje profundo, entrenaron al modelo para segmentar el límite de la próstata en los cortes histológicos y de resonancia magnética, que proporcionan estructuras de tejido microscópicas. Expertos con diferentes niveles de experiencia evaluaron las imágenes generadas en comparación con imágenes de resonancia magnética tradicional de la próstata. El estudio demostró que las resonancias magnéticas del cáncer de próstata producidas con el modelo eran de alta calidad. La segmentación de aprendizaje profundo ayudó a eliminar imágenes con una distorsión importante, lo que indica que este modelo de aprendizaje automático GAN para imágenes de cáncer de próstata tiene implicaciones prometedoras para casos de pacientes complejos.

"El diagnóstico y la evaluación oportunas del pronóstico son desafíos para el cáncer de próstata, y esto resulta en muchas muertes y aumenta [el riesgo de progresión de la enfermedad]", dijo Himanshu Arora, Ph.D., profesor asistente en Sylvester y el Instituto de Urología Desai Sethi en el Escuela de Medicina Miller. “No podemos reemplazar el ojo humano cuando se trata de la toma de decisiones médicas. Aún así, la mejora en las tecnologías podría ayudar potencialmente a los oncólogos de radiación a tomar decisiones oportunas”.

“Técnicamente, la tecnología desarrollada aquí es el principio para construir modelos más sofisticados de 'aumento de datos' donde las nuevas imágenes digitales pueden usarse en análisis posteriores. Esta es una fase temprana de nuestro estudio, pero los resultados son extremadamente prometedores”, agregó el Dr. Arora.

Enlaces relacionados:
Sistema de Salud de la Universidad de Miami

Miembro Oro
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
X-Ray Meter
Cobia SENSE
Advanced Cardiac MRI Analysis Software
3Di Cardiac MR
New
Miembro Plata
Mobile X-Ray Barrier
Lead Acrylic Mobile X-Ray Barriers

Print article

Canales

Radiografía

ver canal
Imagen: El nuevo programa puede ayudar en la detección temprana del cáncer de mama (Fotografía cortesía de NTU, Singapur)

Programa informático combina IA y tecnología de imágenes térmicas para detección temprana de cáncer de mama

El cáncer de mama sigue siendo el cáncer más prevalente en las mujeres en todo el mundo. En 2020, la Organización Mundial de la Salud (OMS) informó aproximadamente 2,1... Más

Medicina Nuclear

ver canal
Imagen: Un agente de imágenes PET recientemente desarrollado es efectivo para identificar el cáncer medular de tiroides (Fotografía cortesía de 123RF)

Nuevo trazador PET mejora detección de lesiones en cáncer medular de tiroides

El cáncer medular de tiroides (CMT) representa aproximadamente el 3 % de todos los casos de cáncer de tiroides y es notablemente raro. Surge de células diferentes en comparación... Más

Imaginología General

ver canal
Imagen: El software LungQ v3.0.0 ha recibido la autorización 510 (k) de la FDA de EUA para el análisis con IA de las imágenes de TC de tórax (Fotografía cortesía de Thirona)

Software de IA para análisis de imágenes de TC de tórax permite tratamiento personalizado para pacientes pulmonares

Un novedoso software clínico aprovecha la inteligencia artificial (IA) para segmentar automáticamente varios segmentos y subsegmentos pulmonares en la anatomía interna del pulmón.... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.