Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Aprendizaje automático ayuda al diagnóstico y pronóstico del cáncer de próstata mediante resonancia magnética

Por el equipo editorial de MedImaging en español
Actualizado el 29 Mar 2023
Imagen: Una nueva investigación aprovecha el poder del aprendizaje automático en las imágenes de cáncer de próstata (Fotografía cortesía del Sistema de Salud de UMiami)
Imagen: Una nueva investigación aprovecha el poder del aprendizaje automático en las imágenes de cáncer de próstata (Fotografía cortesía del Sistema de Salud de UMiami)

La resonancia magnética (RM) convencional es una herramienta confiable para el pronóstico, el diagnóstico, la vigilancia activa y la reducción de la necesidad de procedimientos de biopsia en pacientes con cáncer de próstata de bajo riesgo. La integración de datos de código abierto con modelos de aprendizaje automático ha creado nuevas oportunidades para estudiar la progresión y regresión de enfermedades, particularmente en el campo médico. Sin embargo, la incorporación efectiva del aprendizaje automático en la atención al paciente plantea varios desafíos, como la optimización de los enfoques de aprendizaje automático para cánceres específicos, garantizar la especificidad adecuada de los datos de entrenamiento para una afección médica en particular y más. En este contexto, las redes adversariales generativas (GAN) se están explorando como una posible solución para generar datos sintéticos de alta calidad que representen con precisión la variabilidad clínica de una afección y se puedan aplicar a una variedad de tecnologías de imágenes, incluidas PET, TC, RM, ecografía y radiografías del cerebro, el abdomen y el tórax. Sin embargo, aunque ha habido cierto éxito, el uso de modelos GAN actualmente es limitado cuando se trata de representar con precisión la heterogeneidad de enfermedades complejas como el cáncer de próstata.

Un equipo de investigadores traslacionales del Sistema de Salud de la Universidad de Miami (Miami, FL, EUA) está liderando el camino para mejorar las herramientas GAN para la integración con herramientas de diagnóstico y pronóstico en la investigación del cáncer de próstata. Al requerir menos datos y seguimientos de pacientes, GAN tiene el potencial de revolucionar los modelos de aprendizaje automático y reducir los costos de atención médica y la incomodidad del paciente asociada con las consultas de seguimiento repetidas. El objetivo es utilizar las capacidades de aprendizaje automático de GAN para generar imágenes digitales que aprenden de imágenes de resonancia magnética anteriores y parámetros clínicos, y predicen la progresión de la enfermedad o los patrones de regresión.

El equipo de investigación realizó un estudio utilizando resonancias magnéticas de próstata y patología digital de múltiples fuentes como datos de entrenamiento para desarrollar un modelo GAN. Con el aprendizaje profundo, entrenaron al modelo para segmentar el límite de la próstata en los cortes histológicos y de resonancia magnética, que proporcionan estructuras de tejido microscópicas. Expertos con diferentes niveles de experiencia evaluaron las imágenes generadas en comparación con imágenes de resonancia magnética tradicional de la próstata. El estudio demostró que las resonancias magnéticas del cáncer de próstata producidas con el modelo eran de alta calidad. La segmentación de aprendizaje profundo ayudó a eliminar imágenes con una distorsión importante, lo que indica que este modelo de aprendizaje automático GAN para imágenes de cáncer de próstata tiene implicaciones prometedoras para casos de pacientes complejos.

"El diagnóstico y la evaluación oportunas del pronóstico son desafíos para el cáncer de próstata, y esto resulta en muchas muertes y aumenta [el riesgo de progresión de la enfermedad]", dijo Himanshu Arora, Ph.D., profesor asistente en Sylvester y el Instituto de Urología Desai Sethi en el Escuela de Medicina Miller. “No podemos reemplazar el ojo humano cuando se trata de la toma de decisiones médicas. Aún así, la mejora en las tecnologías podría ayudar potencialmente a los oncólogos de radiación a tomar decisiones oportunas”.

“Técnicamente, la tecnología desarrollada aquí es el principio para construir modelos más sofisticados de 'aumento de datos' donde las nuevas imágenes digitales pueden usarse en análisis posteriores. Esta es una fase temprana de nuestro estudio, pero los resultados son extremadamente prometedores”, agregó el Dr. Arora.

Enlaces relacionados:
Sistema de Salud de la Universidad de Miami

New
Half Apron
Demi
Computed Tomography System
Aquilion ONE / INSIGHT Edition
Multi-Use Ultrasound Table
Clinton
Portable Color Doppler Ultrasound System
S5000

Canales

Ultrasonido

ver canal
Imagen: el ultrasonido focalizado puede detener el crecimiento de lesiones cerebrales debilitantes (Foto cortesía de Nature Biomedical Engineering; doi.org/10.1038/s41551-025-01390-z)

Nueva técnica sin incisiones detiene el crecimiento de lesiones cerebrales debilitantes

Las malformaciones cavernosas cerebrales (MCC), también conocidas como cavernomas, son agrupaciones anómalas de vasos sanguíneos que pueden formarse en el cerebro, la médula... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

Imaginología General

ver canal
Imagen: El cinturón de TC por ultrasonido podría facilitar el seguimiento de pacientes con afecciones cardíacas y pulmonares (foto cortesía de la Universidad de Bath)

Dispositivo portátil pionero ofrece una alternativa revolucionaria a las tomografías computarizadas

Actualmente, los pacientes con afecciones como insuficiencia cardíaca, neumonía o dificultad respiratoria suelen requerir múltiples procedimientos de diagnóstico por imagen... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.