Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




Nuevo método combina aprendizaje profundo y física para reparar resonancias magnéticas dañadas por movimiento

Por el equipo editorial de MedImaging en español
Actualizado el 22 Aug 2023
Imagen: Un modelo de aprendizaje profundo es capaz de corregir los movimientos en la resonancia magnética del cerebro (Fotografía cortesía del MIT)
Imagen: Un modelo de aprendizaje profundo es capaz de corregir los movimientos en la resonancia magnética del cerebro (Fotografía cortesía del MIT)

La resonancia magnética (RM) es conocida por su capacidad superior para proporcionar un contraste de tejidos blandos de alta calidad, lo que la convierte en una opción preferida sobre otras técnicas de imágenes como rayos X o tomografías computarizadas. Sin embargo, uno de los desafíos de la resonancia magnética es su extrema sensibilidad incluso hasta los movimientos más pequeños, lo que genera artefactos en la imagen. Estos artefactos pueden oscurecer detalles esenciales, poniendo a los pacientes en riesgo de ser diagnosticados erróneamente o de recibir un tratamiento incorrecto. El proceso de una exploración por resonancia magnética varía en duración, desde unos minutos hasta una hora entera, dependiendo de las imágenes específicas requeridas. Incluso durante los escaneos más rápidos, los movimientos menores pueden distorsionar enormemente la imagen resultante. Mientras que en las imágenes típicas de una cámara, el movimiento produce un desenfoque localizado, el movimiento durante una exploración por resonancia magnética puede causar artefactos que dañan toda la imagen. A algunos pacientes se les puede anestesiar o pedirles que controlen su respiración para minimizar el movimiento, pero estas soluciones no siempre son factibles, especialmente en poblaciones específicas como niños o pacientes con trastornos psiquiátricos.

Investigadores del MIT (Cambridge, MA, EUA) han afrontado este desafío mediante la creación de un novedoso modelo de aprendizaje profundo que puede corregir el movimiento en exploraciones por resonancia magnética del cerebro. Este método combina modelado basado en la física con técnicas de aprendizaje profundo, lo que permite la construcción de una imagen libre de movimiento a partir de datos corruptos, sin la necesidad de alterar el proceso de escaneo real. La brillantez de este método combinado es su capacidad para garantizar la coherencia entre la imagen producida y las medidas físicas reales de lo que se representa. Si no se mantiene este equilibrio, el modelo podría crear "alucinaciones": imágenes que parecen realistas pero que son física y espacialmente incorrectas. Esto podría conducir a diagnósticos aún más engañosos. La aplicación de una resonancia magnética libre de artefactos de movimiento no sólo mejoraría los resultados de los pacientes sino que también tiene implicaciones de amplio alcance, especialmente para pacientes con trastornos neurológicos que causan movimientos involuntarios, como la enfermedad de Alzheimer o de Parkinson.

El impacto de los artefactos de movimiento no se limita únicamente al diagnóstico del paciente. Un estudio anterior estimó que los problemas relacionados con el movimiento afectan al 15 % de las resonancias magnéticas del cerebro, lo que lleva a exploraciones repetidas o sesiones de imágenes prolongadas. Esta necesidad de volver a obtener imágenes se traduce en mayores costos hospitalarios por escáner. Los investigadores creen que su innovación podría ampliarse aún más. Las investigaciones futuras podrían profundizar en tipos más complejos de movimiento de la cabeza o explorar desafíos relacionados con el movimiento en otras partes del cuerpo. Por ejemplo, la resonancia magnética fetal, que enfrenta el problema del movimiento rápido e impredecible, requiere un método que va más allá de simples traslaciones y rotaciones. El desarrollo de un método de corrección del movimiento para resonancias magnéticas cerebrales marca un avance significativo en imágenes médicas que puede mejorar la precisión del diagnóstico y reducir los costos de atención médica.

Enlaces relacionados:
MIT

Ultrasonic Pocket Doppler
SD1
Digital X-Ray Detector Panel
Acuity G4
Medical Radiographic X-Ray Machine
TR30N HF
40/80-Slice CT System
uCT 528

Canales

Radiografía

ver canal
Imagen: la prueba de detección \"dos por uno\" podría ayudar a detectar las principales causas de muerte de mujeres en todo el mundo (foto cortesía de Shutterstock)

Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... Más

Ultrasonido

ver canal
Imagen: el parche de ultrasonido realiza simultáneamente imágenes de ultrasonido y medición de la presión arterial de ambas arterias carótidas (Fotografía cortesía de KIST)

Parche de ultrasonido desechable supera el rendimiento de los dispositivos existentes

Los dispositivos portátiles de ultrasonido se utilizan ampliamente en el diagnóstico, el monitoreo de la rehabilitación y la telemedicina. Sin embargo, la mayoría de los modelos... Más

Medicina Nuclear

ver canal
Imagen: el Dr. Glenn Bauman, científico de LHSCRI, posa frente al escáner PET (Foto cortesía de LHSCRI).

Nueva solución de imagen mejora la supervivencia de los pacientes con cáncer de próstata recurrente

La detección del cáncer de próstata recurrente sigue siendo uno de los mayores desafíos en oncología, ya que los métodos de imagen estándar, como las g... Más

Imaginología General

ver canal
Imagen: Concepto de los SCNP fotosensibles (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste

Las tecnologías de imagen médica enfrentan desafíos constantes para capturar vistas precisas y detalladas de los procesos internos, especialmente en enfermedades como el cáncer,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.