Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Algoritmo basado en resonancia magnética predice con precisión patologías de columna

Por el equipo editorial de MedImaging en español
Actualizado el 17 Oct 2023
Print article
Imagen: El algoritmo basado en resonancia magnética puede diferenciarse entre diferentes patologías de la columna (Fotografía cortesía de 123RF)
Imagen: El algoritmo basado en resonancia magnética puede diferenciarse entre diferentes patologías de la columna (Fotografía cortesía de 123RF)

Existen varios tipos de patologías de la columna, que van desde traumatismos y enfermedades degenerativas hasta infecciones, neoplasias, afecciones inflamatorias y tumores. Por lo tanto, la evaluación clínica a menudo se basa en pruebas de laboratorio y estudios de imágenes para guiar el diagnóstico y las decisiones de tratamiento. Aunque la biopsia es el método definitivo de diagnóstico, es invasiva y costosa. Ahora, un nuevo estudio ha revelado que un algoritmo de aprendizaje profundo que utiliza exploraciones por resonancia magnética puede distinguir eficazmente entre diferentes tipos de patologías de la columna. El estudio mostró que la precisión del algoritmo fue moderada para el grupo de validación pero alta para el grupo de prueba.

Investigadores del Centro Médico de Tel Aviv (Tel Aviv, Israel) construyeron el algoritmo de aprendizaje profundo en el marco Fast.ai sobre el entorno PyTorch y utilizan datos de resonancia magnética previos a la cirugía y hallazgos patológicos posoperatorios para sus evaluaciones. Los datos utilizados para el entrenamiento y la validación se organizaron en un formato de validación cruzada quíntuple. El estudio examinó datos de resonancia magnética de 231 pacientes que tenían diferentes patologías de la columna: carcinoma, infección, meningioma y schwannoma. La investigación indicó que el algoritmo logró una precisión promedio de 0,78 en el conjunto de validación y 0,93 en el conjunto de prueba.

Si bien los investigadores admiten que el algoritmo no es tan preciso como los informes de patología tradicionales, lo ven como una herramienta prometedora para el diagnóstico oportuno de afecciones de la columna. Potencialmente, podría reducir la necesidad de procedimientos más riesgosos e invasivos, como las biopsias. Sugieren que las investigaciones futuras deberían centrarse en integrar conjuntos de datos de pacientes más grandes y diversos para evaluar la aplicabilidad más amplia del algoritmo. También destacaron la necesidad de estudios adicionales para explorar la viabilidad de utilizar métodos de aprendizaje profundo para identificar patologías de la columna mediante resonancia magnética.

"Aunque se basa en una cohorte segregada relativamente pequeña, este estudio representa el poder de las herramientas de aprendizaje profundo en la predicción de patologías de la columna y sienta las bases para desarrollar algoritmos basados en el aprendizaje profundo para este propósito", escribieron los autores.

Enlaces relacionados:
Centro Médico de Tel Aviv

New
Digital Radiography System
DigiEye 680
Diagnostic Ultrasound System
MS1700C
NMUS & MSK Ultrasound
InVisus Pro
Mobile Barrier
Tilted Mobile Leaded Barrier

Print article

Canales

Radiografía

ver canal
Imagen:Los gráficos ilustran cómo se ven las imágenes 3D con XACT con ejemplos del logotipo de la UC a la izquierda y una muestra de hueso a la derecha (foto cortesía de la Escuela de Medicina de UCI)

Imágenes 3D por TC a partir de una sola proyección de rayos X reducen la exposición a la radiación

La tomografía computarizada (TC) ha sido durante mucho tiempo una herramienta esencial en la obtención de imágenes modernas, ya que ofrece vistas 3D detalladas del cuerpo humano y otros materiales.... Más

Ultrasonido

ver canal
Imagen: Mapas de calor que la IA evaluó para realizar diagnósticos de enfermedades pulmonares (Foto cortesía de COVIDx-US)

IA diagnostica enfermedades pulmonares a partir de ecografías con una precisión del 96.57%

La inteligencia artificial (IA) tiene el potencial de convertirse en una herramienta crucial para los radiólogos, con avances recientes que le permiten diagnosticar con precisión neumonía,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.