Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Algoritmo basado en resonancia magnética predice con precisión patologías de columna

Por el equipo editorial de MedImaging en español
Actualizado el 17 Oct 2023
Imagen: El algoritmo basado en resonancia magnética puede diferenciarse entre diferentes patologías de la columna (Fotografía cortesía de 123RF)
Imagen: El algoritmo basado en resonancia magnética puede diferenciarse entre diferentes patologías de la columna (Fotografía cortesía de 123RF)

Existen varios tipos de patologías de la columna, que van desde traumatismos y enfermedades degenerativas hasta infecciones, neoplasias, afecciones inflamatorias y tumores. Por lo tanto, la evaluación clínica a menudo se basa en pruebas de laboratorio y estudios de imágenes para guiar el diagnóstico y las decisiones de tratamiento. Aunque la biopsia es el método definitivo de diagnóstico, es invasiva y costosa. Ahora, un nuevo estudio ha revelado que un algoritmo de aprendizaje profundo que utiliza exploraciones por resonancia magnética puede distinguir eficazmente entre diferentes tipos de patologías de la columna. El estudio mostró que la precisión del algoritmo fue moderada para el grupo de validación pero alta para el grupo de prueba.

Investigadores del Centro Médico de Tel Aviv (Tel Aviv, Israel) construyeron el algoritmo de aprendizaje profundo en el marco Fast.ai sobre el entorno PyTorch y utilizan datos de resonancia magnética previos a la cirugía y hallazgos patológicos posoperatorios para sus evaluaciones. Los datos utilizados para el entrenamiento y la validación se organizaron en un formato de validación cruzada quíntuple. El estudio examinó datos de resonancia magnética de 231 pacientes que tenían diferentes patologías de la columna: carcinoma, infección, meningioma y schwannoma. La investigación indicó que el algoritmo logró una precisión promedio de 0,78 en el conjunto de validación y 0,93 en el conjunto de prueba.

Si bien los investigadores admiten que el algoritmo no es tan preciso como los informes de patología tradicionales, lo ven como una herramienta prometedora para el diagnóstico oportuno de afecciones de la columna. Potencialmente, podría reducir la necesidad de procedimientos más riesgosos e invasivos, como las biopsias. Sugieren que las investigaciones futuras deberían centrarse en integrar conjuntos de datos de pacientes más grandes y diversos para evaluar la aplicabilidad más amplia del algoritmo. También destacaron la necesidad de estudios adicionales para explorar la viabilidad de utilizar métodos de aprendizaje profundo para identificar patologías de la columna mediante resonancia magnética.

"Aunque se basa en una cohorte segregada relativamente pequeña, este estudio representa el poder de las herramientas de aprendizaje profundo en la predicción de patologías de la columna y sienta las bases para desarrollar algoritmos basados en el aprendizaje profundo para este propósito", escribieron los autores.

Enlaces relacionados:
Centro Médico de Tel Aviv

Multi-Use Ultrasound Table
Clinton
Floor‑Mounted Digital X‑Ray System
MasteRad MX30+
Adjustable Mobile Barrier
M-458
Portable X-ray Unit
AJEX140H

Canales

Radiografía

ver canal
Imagen: la prueba de detección \"dos por uno\" podría ayudar a detectar las principales causas de muerte de mujeres en todo el mundo (foto cortesía de Shutterstock)

Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... Más

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: los cristales de perovskita se cultivan en condiciones cuidadosamente controladas a partir de la masa fundida (foto cortesía de Mercouri Kanatzidis/Northwestern University)

Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico

Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más

Imaginología General

ver canal
Imagen: Concepto de los SCNP fotosensibles (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste

Las tecnologías de imagen médica enfrentan desafíos constantes para capturar vistas precisas y detalladas de los procesos internos, especialmente en enfermedades como el cáncer,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.