Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Técnica de resonancia magnética especializada crea "súper exploraciones" del cerebro

Por el equipo editorial de MedImaging en español
Actualizado el 27 Dec 2023
Imagen: Un nuevo algoritmo llamado DeepSTI toma datos de múltiples escaneos individuales y proporciona una 'súper exploración' del cerebro (Fotografía cortesía de la Universidad Johns Hopkins)
Imagen: Un nuevo algoritmo llamado DeepSTI toma datos de múltiples escaneos individuales y proporciona una 'súper exploración' del cerebro (Fotografía cortesía de la Universidad Johns Hopkins)

La imagen con tensor de susceptibilidad (STI) es una técnica de resonancia magnética especializada que puede medir la susceptibilidad magnética de varios tejidos cerebrales. Este proceso implica cuantificar cómo estos tejidos se magnetizan en el campo magnético de un escáner de resonancia magnética. Esta información detallada es crucial para mejorar la comprensión, el diagnóstico y el seguimiento de enfermedades neurológicas como la esclerosis múltiple (EM) y la enfermedad de Alzheimer. Los investigadores ahora han logrado un avance significativo al desarrollar DeepSTI, un nuevo algoritmo que recopila datos de múltiples exploraciones para producir una "súper exploración" integral del cerebro. Esto ofrece información precisa sobre la susceptibilidad del tejido cerebral. Sorprendentemente, DeepSTI requiere menos imágenes y posiciones de la cabeza que las STI convencionales, lo que agiliza el proceso para los pacientes.

Desarrollado por investigadores de la Universidad Johns Hopkins (Baltimore, MD, EUA), este algoritmo crea un mapa tridimensional detallado de la susceptibilidad magnética del cerebro. Su principal avance radica en su capacidad para medir componentes críticos del tejido cerebral, como la mielina y el hierro, con menos exploraciones. Monitorear los cambios en estos tejidos es esencial para caracterizar el tipo, estadio o progresión de las enfermedades neurológicas. Por ejemplo, DeepSTI puede visualizar cambios en la mielina en pacientes con EM utilizando datos de un único escaneo de orientación de la cabeza.

DeepSTI aprovecha el aprendizaje automático, en particular un enfoque conocido como regularización, que reduce la gama de posibles soluciones a las más precisas. El modelo utiliza regularizadores especiales, informados por datos de escaneos previos, para guiarlo hacia reconstrucciones cerebrales óptimas. Estos regularizadores basados en datos llevan el modelo a la solución más plausible para cada nuevo conjunto de escaneo. Este algoritmo mejorado con aprendizaje automático está preparado para hacer de las STI una opción de obtención de imágenes más práctica para médicos y radiólogos al reducir la duración de la exploración y mejorar la calidad de la imagen.

"Por lo general, las imágenes de STI requieren al menos seis exploraciones diferentes en diferentes orientaciones de la cabeza para lograr una buena reconstrucción, y esa es principalmente la razón por la que actualmente no se usa ampliamente a pesar de su potencial para comprender el cerebro humano", dijo el autor principal Jeremias Sulam, profesor asistente de Ingeniería Biomédica. "Nuestras reconstrucciones asistidas por IA amplían enormemente la cantidad de información útil que se puede obtener y al mismo tiempo requieren muchos menos datos, y esperamos que ayuden a trasladar esta técnica de imágenes del laboratorio a la clínica".

Enlaces relacionados:
Universidad Johns Hopkins

Portable X-ray Unit
AJEX140H
Computed Tomography System
Aquilion ONE / INSIGHT Edition
Biopsy Software
Affirm® Contrast
New
Miembro Plata
X-Ray QA Device
Accu-Gold+ Touch Pro

Canales

Radiografía

ver canal
Imagen: la AI evalúa las mamografías mejor que los radiólogos (foto cortesía de la Universidad de Radboud)

Estrategia híbrida con IA mejora la interpretación de mamografías

Los programas de detección del cáncer de mama dependen en gran medida de la interpretación de las mamografías por parte de radiólogos, un proceso que requiere mucho tiempo... Más

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: la herramienta de diagnóstico podría mejorar las decisiones de diagnóstico y tratamiento para pacientes con infecciones pulmonares crónicas (foto cortesía de SNMMI)

Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar

Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más

Imaginología General

ver canal
Imagen: un modelo de aprendizaje profundo basado en parches con un conjunto de datos de entrenamiento limitado para la segmentación de tumores hepáticos en TC con contraste (Yang et al. (2025), IEEE Access, 10.1109/Access.2025.3570728)

Modelo de IA segmenta con precisión tumores hepáticos a partir de tomografías computarizadas

El cáncer de hígado es el sexto tipo de cáncer más común en el mundo y una de las principales causas de muerte por cáncer. La segmentación precisa de los tumores hepáticos es crucial para el diagnóstico... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.