Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




IA analiza datos de resonancias magnéticas, biopsias y valores sanguíneos para diagnosticar trastornos intestinales y cerebrales

Por el equipo editorial de MedImaging en español
Actualizado el 16 Feb 2024
Imagen: Un sistema informático puede conectar y analizar diversos tipos de datos médicos para el diagnóstico de enfermedades (Fotografía cortesía de 123RF)
Imagen: Un sistema informático puede conectar y analizar diversos tipos de datos médicos para el diagnóstico de enfermedades (Fotografía cortesía de 123RF)

La atención sanitaria está evolucionando hacia un sistema informático que aprende de una gran cantidad de datos médicos y ofrece asesoramiento personalizado a los pacientes. Esto podría implicar, por ejemplo, comparar la resonancia magnética de un paciente con una base de datos de exploraciones e historiales médicos completos de casos similares. La complejidad de este sistema radica en el manejo de varios tipos de datos, incluida información textual, resultados de análisis de sangre, imágenes médicas y datos genéticos.

Un equipo internacional de investigadores, que incluye investigadores del Centro Médico de la Universidad Radboud en Nijmegen, Países Bajos, y respaldado por una subvención de 11 millones de euros de la Comisión Europea, está en el proceso de crear un sistema de inteligencia artificial (IA). Esta IA está diseñada para proporcionar información sobre varios trastornos cerebrales e intestinales, como la depresión, la ansiedad y la obesidad, y para explorar las interrelaciones entre estas condiciones. El sistema informático, denominado Ciompi, será capaz de conectar y analizar diversos tipos de datos médicos. La atención se centra en los trastornos relacionados con el cerebro y los intestinos debido a la importante interacción entre estos dos órganos, conocida como el "eje intestino-cerebro". El sistema buscará patrones en estos datos multimodales, como la presencia simultánea de condiciones o estados específicos.

Ya está disponible una cantidad considerable de datos de estudios anteriores, incluidas 20.000 imágenes digitalizadas de pólipos intestinales y biopsias, datos sobre bacterias intestinales, información genética y numerosas exploraciones cerebrales por resonancia magnética. Los investigadores planean interconectar estos conjuntos de datos, y el alcance más amplio del proyecto de la UE incluye examinar factores como la contaminación del aire. El sistema informático empleará algoritmos que aprenden de este conjunto de datos. Estos algoritmos se alojarán en la plataforma Grand Challenge, reconocida por albergar competencias globales para desarrollar algoritmos superiores para el análisis de imágenes médicas, como tomografías computarizadas o resonancias magnéticas. Esta plataforma también admite el alojamiento de varios algoritmos y tipos de datos, accesibles en diferentes formatos. Actualmente, la plataforma admite imágenes médicas y portaobjetos de patología digital, pero el proyecto tiene como objetivo incorporar tipos de datos adicionales, como información genética. Los nuevos algoritmos se integrarán en esta plataforma. Sin embargo, no todos los datos utilizados para entrenar el sistema se almacenarán en línea.

Cada vez más, se emplean métodos "federados" para entrenar algoritmos de IA y acceder a datos. Por ejemplo, en el aprendizaje federado, los algoritmos visitan virtualmente diferentes hospitales a través de la plataforma, aprendiendo directamente de los datos médicos in situ, sin necesidad de transferir los datos fuera del hospital. Una vez que los algoritmos hayan aprendido lo suficiente de estas visitas virtuales, podrán ayudar a los médicos en el futuro. Por ejemplo, Ciompi podrá comparar diversos datos del intestino y el cerebro de un paciente, como exploraciones por resonancia magnética funcional, biopsias intestinales y secuencias de metabolomas de muestras fecales, con exploraciones y registros médicos de casos similares. Luego, este sistema puede ayudar a los proveedores de atención médica a diagnosticar, predecir resultados, identificar posibles conexiones con otras afecciones y recomendar estrategias de tratamiento.

Enlaces relacionados:
Centro Médico de la Universidad de Radboud

Post-Processing Imaging System
DynaCAD Prostate
Multi-Use Ultrasound Table
Clinton
Digital Color Doppler Ultrasound System
MS22Plus
Portable X-ray Unit
AJEX140H

Canales

Radiografía

ver canal
Imagen: la prueba de detección \"dos por uno\" podría ayudar a detectar las principales causas de muerte de mujeres en todo el mundo (foto cortesía de Shutterstock)

Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... Más

Ultrasonido

ver canal
Imagen: el parche de ultrasonido realiza simultáneamente imágenes de ultrasonido y medición de la presión arterial de ambas arterias carótidas (Fotografía cortesía de KIST)

Parche de ultrasonido desechable supera el rendimiento de los dispositivos existentes

Los dispositivos portátiles de ultrasonido se utilizan ampliamente en el diagnóstico, el monitoreo de la rehabilitación y la telemedicina. Sin embargo, la mayoría de los modelos... Más

Medicina Nuclear

ver canal
Imagen: el Dr. Glenn Bauman, científico de LHSCRI, posa frente al escáner PET (Foto cortesía de LHSCRI).

Nueva solución de imagen mejora la supervivencia de los pacientes con cáncer de próstata recurrente

La detección del cáncer de próstata recurrente sigue siendo uno de los mayores desafíos en oncología, ya que los métodos de imagen estándar, como las g... Más

Imaginología General

ver canal
Imagen: Concepto de los SCNP fotosensibles (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste

Las tecnologías de imagen médica enfrentan desafíos constantes para capturar vistas precisas y detalladas de los procesos internos, especialmente en enfermedades como el cáncer,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.