Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Algoritmo de IA detecta el 30% de los cánceres de mama que no se ven en las resonancias magnéticas

Por el equipo editorial de MedImaging en español
Actualizado el 15 Nov 2024
Imagen: Cada uno de los cuatro paneles muestra el seno sano en la resonancia magnética actual (izquierda) y el cáncer en la RM posterior (derecha), con el cáncer destacado en amarillo (foto cortesía de Academic Radiology; doi.org/10.1016/j. ACRA.2024.10.014)
Imagen: Cada uno de los cuatro paneles muestra el seno sano en la resonancia magnética actual (izquierda) y el cáncer en la RM posterior (derecha), con el cáncer destacado en amarillo (foto cortesía de Academic Radiology; doi.org/10.1016/j. ACRA.2024.10.014)

En los Estados Unidos, más de 500.000 mujeres participan cada año en exámenes suplementarios de resonancia magnética (RM) de mama. Se considera que estas mujeres tienen un riesgo elevado de cáncer de mama. Después de una mamografía de detección negativa, la RM complementaria puede descubrir entre 15 y 18 cánceres adicionales por cada 1.000 mujeres de alto riesgo. Gracias a la mayor sensibilidad de la RM en comparación con la mamografía, puede ser posible estimar el riesgo de una persona de desarrollar cáncer en el próximo año basado en su última RM de cribado negativa. Los investigadores han propuesto que los exámenes de RM actuales contienen información valiosa sobre el resultado del próximo cribado anual. Basándose en esta hipótesis, han desarrollado y evaluado un algoritmo de inteligencia artificial (IA) para identificar el cáncer de mama en exploraciones de RM hasta un año antes de cuando los radiólogos normalmente lo detectan, lo que podría mejorar la detección temprana entre mujeres de alto riesgo.

Un equipo de investigación del City College de Nueva York (Nueva York, NY, EUA) afinó un modelo de IA de red neuronal convolucional (CNN), que se entrenó previamente con datos de RM de mama, utilizando un conjunto de datos retrospectivo que incluía 3029 exploraciones de resonancia magnética de 910 pacientes. Este conjunto de datos contenía 115 cánceres diagnosticados en el plazo de un año a partir de un resultado negativo de la resonancia magnética. El modelo tenía como objetivo identificar estos cánceres para predecir el desarrollo del cáncer con hasta un año de antelación. La red se afinó y validó utilizando un método de validación cruzada de 10 veces. La edad media de los pacientes involucrados fue de 52 años, con un rango de entre 18 y 88 años, con una duración media de seguimiento de 4,3 años, que abarcó de 1 a 12 años.

La IA fue capaz de detectar cánceres un año antes, logrando un área bajo la curva ROC de 0,72. Una revisión retrospectiva por parte de un radiólogo de las resonancias magnéticas con el 10% más alto de riesgo, según la clasificación de la IA, podría haber aumentado la detección temprana hasta en un 30%. El radiólogo identificó un marcador visual para los cánceres confirmados por biopsia en 83 escaneos de RM del año anterior. El algoritmo de IA señaló las regiones anatómicas donde se detectaría el cáncer en 66 casos, con concordancia entre los dos métodos en 54 casos. Con base en los hallazgos publicados en la revista Academic Radiology, los investigadores concluyeron que su innovadora reevaluación asistida por IA de las exploraciones mamarias "benignas" tiene promesa para mejorar la detección temprana del cáncer de mama mediante RM. A medida que los conjuntos de datos se expandan y la calidad de la imagen continúe mejorando, anticipan que este método será cada vez más influyente.

Half Apron
Demi
New
Mobile X-Ray System
K4W
Breast Localization System
MAMMOREP LOOP
Computed Tomography System
Aquilion ONE / INSIGHT Edition

Canales

Radiografía

ver canal
Imagen: la AI evalúa las mamografías mejor que los radiólogos (foto cortesía de la Universidad de Radboud)

Estrategia híbrida con IA mejora la interpretación de mamografías

Los programas de detección del cáncer de mama dependen en gran medida de la interpretación de las mamografías por parte de radiólogos, un proceso que requiere mucho tiempo... Más

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: la herramienta de diagnóstico podría mejorar las decisiones de diagnóstico y tratamiento para pacientes con infecciones pulmonares crónicas (foto cortesía de SNMMI)

Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar

Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más

Imaginología General

ver canal
Imágenes de resultado positivo en examen de detección de colonografía por TC en un hombre asintomático de 67 años (foto cortesía de Radiology)

La colonografía por TC supera a la prueba de ADN en heces para la detección del cáncer de colon

Dado que el cáncer colorrectal sigue siendo la segunda causa principal de muertes relacionadas con el cáncer a nivel mundial, la detección temprana mediante pruebas de cribado es fundamental... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.