Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA identifica nódulos tiroideos no cancerosos en imágenes de ultrasonido y reduce las biopsias

Por el equipo editorial de MedImaging en español
Actualizado el 14 Jun 2022
Imagen: La IA se puede usar para identificar nódulos tiroideos benignos y reducir biopsias innecesarias (Fotografía cortesía de Pexels)
Imagen: La IA se puede usar para identificar nódulos tiroideos benignos y reducir biopsias innecesarias (Fotografía cortesía de Pexels)

Los nódulos tiroideos son muy comunes. La biopsia por aspiración con aguja fina se utiliza para diagnosticar el cáncer de tiroides. Sin embargo, la mayoría de las biopsias producen resultados benignos (no cancerosos) y son potencialmente evitables. Ahora, un nuevo estudio ha encontrado que la inteligencia artificial (IA) se puede utilizar para identificar nódulos tiroideos, observados en una ecografía tiroidea, que es muy poco probable que sean cancerosos, lo que reduce una gran cantidad de biopsias innecesarias.

En el nuevo estudio, investigadores del Campus Médico Anschutz de la Universidad de Colorado (Aurora, CO, EUA) utilizaron el aprendizaje automático, un tipo de IA, para analizar imágenes de ultrasonido de nódulos tiroideos. El aprendizaje automático es el proceso de usar modelos matemáticos de datos para ayudar a una computadora a aprender sin instrucción directa. Se utilizaron más de 30.000 imágenes de 621 nódulos tiroideos para entrenar el modelo de aprendizaje automático que clasifica los nódulos tiroideos como "cáncer" o "no cáncer". El modelo se probó en un conjunto diferente de 145 nódulos recolectados en otro sistema de atención médica. El modelo basado en IA logró una sensibilidad (capacidad de no pasar por alto el cáncer) del 97 % y una especificidad (capacidad de identificar correctamente un cáncer) del 61 %.

"Este estudio demuestra que el clasificador de IA de nódulos tiroideos basado en ultrasonido logra una sensibilidad comparable a la de la biopsia tiroidea por aspiración con aguja fina", dijo el investigador principal del estudio, Nikita Pozdeyev, MD, Ph.D., del Campus Médico Anschutz de la Universidad de Colorado. .

“Creemos que este es un buen próximo paso para mejorar la atención al paciente y evitar procedimientos innecesarios”, dijo. Señaló que se necesitan ensayos clínicos prospectivos antes de que esta herramienta pueda aceptarse como un estándar de atención.

“Demostramos que definitivamente es posible usar el análisis de IA de las imágenes de ultrasonido para descartar el cáncer de tiroides y evitar la biopsia”, dijo. “Esta tecnología podría ayudar a los radiólogos y endocrinólogos a elegir qué nódulos tiroideos deben someterse a una biopsia, especialmente aquellos en la comunidad que no pueden revisar una gran cantidad de imágenes de ultrasonido de la tiroides”.

Enlaces relacionados:
Campus Médico Anschutz de la Universidad de Colorado  

Radiation Safety Barrier
RayShield Intensi-Barrier
Mammo DR Retrofit Solution
DR Retrofit Mammography
Diagnostic Ultrasound System
DC-80A
Mammography System (Analog)
MAM VENUS

Canales

Radiografía

ver canal
Imagen: la prueba de detección \"dos por uno\" podría ayudar a detectar las principales causas de muerte de mujeres en todo el mundo (foto cortesía de Shutterstock)

Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... Más

Medicina Nuclear

ver canal
Imagen: los cristales de perovskita se cultivan en condiciones cuidadosamente controladas a partir de la masa fundida (foto cortesía de Mercouri Kanatzidis/Northwestern University)

Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico

Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más

Imaginología General

ver canal
Imagen: Concepto de los SCNP fotosensibles (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste

Las tecnologías de imagen médica enfrentan desafíos constantes para capturar vistas precisas y detalladas de los procesos internos, especialmente en enfermedades como el cáncer,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.