Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Nuevo modelo de IA ayuda a radiólogos a identificar lesiones de cáncer de mama en imágenes de ultrasonido

Por el equipo editorial de MedImaging en español
Actualizado el 30 Aug 2023
Print article
Imagen: El modelo de aprendizaje profundo se desempeñó tan bien como lectores humanos experimentados en la evaluación de las imágenes de ultrasonido para el cáncer de mama (Fotografía cortesía de 123RF)
Imagen: El modelo de aprendizaje profundo se desempeñó tan bien como lectores humanos experimentados en la evaluación de las imágenes de ultrasonido para el cáncer de mama (Fotografía cortesía de 123RF)

Si bien la ecografía se utiliza con frecuencia para diagnosticar el cáncer de mama debido a su disponibilidad y rentabilidad, su precisión sigue siendo un desafío, lo que a menudo conduce a altas tasas de falsos positivos y biopsias innecesarias. Ahora, un nuevo modelo de inteligencia artificial (IA) podría mejorar la precisión de los radiólogos al evaluar imágenes de ultrasonido en busca de indicaciones de cáncer de mama. Este algoritmo podría resultar particularmente beneficioso para lectores con menos experiencia que aún están desarrollando sus habilidades.

Investigadores de la Universidad Médica de Nanjing (Nanjing, China) llevaron a cabo un estudio retrospectivo para evaluar el desempeño diagnóstico de un modelo de aprendizaje profundo (DL) para ecografía mamaria y su utilidad para lectores con distintos niveles de experiencia. Utilizaron datos de más de 45.000 imágenes de ultrasonido tomadas con 42 tipos de máquinas diferentes en cuatro hospitales. Los investigadores desarrollaron y verificaron una red neuronal convolucional basada en la atención dual que puede diferenciar los tumores malignos de los benignos utilizando imágenes de ultrasonido Doppler color y modo B.

Utilizando el modelo DL y sin utilizarlo, tres lectores novatos con menos de 5 años de experiencia en ecografía y dos lectores experimentados con 8 y 18 años de experiencia en ecografía interpretaron cada uno 1.024 lesiones elegidas al azar. Las diferencias en las áreas bajo las curvas características operativas del receptor (AUC) se analizaron mediante la prueba de DeLong. El modelo DL mostró un desempeño similar al de los lectores humanos experimentados, destacando su potencial como herramienta de diagnóstico confiable. Específicamente, el AUC del modelo DL coincidió estrechamente con el de radiólogos experimentados. Los radiólogos novatos con menos de cinco años de experiencia en ultrasonido demostraron mejoras notables cuando fueron asistidos por el modelo DL. El modelo aumentó su precisión diagnóstica, elevando efectivamente su desempeño a niveles similares a los de lectores experimentados.

Con la ayuda del modelo DL, tanto los radiólogos novatos como los experimentados mostraron mejoras sustanciales en la precisión del diagnóstico y la concordancia entre observadores. De particular importancia fue la notable disminución del 7,6 % en la tasa promedio de falsos positivos. Estos hallazgos sugieren que el diagnóstico asistido por DL podría ser extremadamente beneficioso para el diagnóstico de tumores de mama mediante imágenes de ultrasonido. La precisión del modelo, los resultados consistentes en diferentes hospitales y la capacidad de apoyar tanto a principiantes como a expertos indican un futuro prometedor para la integración de la tecnología de DL en la práctica clínica. Al aumentar la precisión del diagnóstico y minimizar las tasas de falsos positivos, el modelo de DL podría potencialmente agilizar los procesos clínicos y reducir el riesgo de realizar biopsias innecesarias.

"Este método es prometedor como una herramienta eficiente y rentable para ayudar a los radiólogos, especialmente a los radiólogos novatos, en el diagnóstico de tumores de mama", afirmó el primer autor Huiling Xiang. "Se necesitan más estudios para caracterizar la viabilidad de la adopción generalizada del modelo".

Enlaces relacionados:
Universidad Médica de Nanjing

New
Proveedor de oro
Electrode Solution and Skin Prep
Signaspray
Proveedor de oro
Ultrasound System
FUTUS LE
New
X-Ray Meter
Cobia SENSE
Proveedor de oro
CR Reader
FCR PRIMA II

Print article
Radcal

Canales

Radiografía

ver canal
Imagen:  INSIGHT CXR de Lunit detecta 10 hallazgos radiológicos anormales con una precisión del 97-99 % (Fotografía cortesía de Lunit)

Software de detección de lesiones basado en IA detecta nódulos pulmonares incidentales en radiografías de tórax

En el campo de la radiología, la inteligencia artificial (IA) ha logrado avances significativos, particularmente en el desarrollo de software de detección de lesiones basado en IA para r... Más

RM

ver canal
Imagen: Los investigadores están utilizando radioterapia guiada por resonancia magnética que combina resonancia magnética diaria con radioterapia (Fotografía cortesía de Sylvester)

Técnica de IA rastrea automáticamente tumores en grandes conjuntos de datos de resonancia magnética para guiar tratamiento del glioblastoma en tiempo real

El tratamiento del glioblastoma, un cáncer cerebral agresivo y prevalente, implica el uso de radioterapia guiada por imágenes de tomografía computarizada. Si bien este método... Más

Medicina Nuclear

ver canal
Imagen: Un novedoso radiotrazador PET facilita la detección temprana y no invasiva de la EII (Fotografía cortesía de Karmanos)

Nuevo radiotrazador PET ayuda a detectar de forma temprana y no invasiva la enfermedad inflamatoria intestinal

La enfermedad inflamatoria intestinal (EII), que incluye la enfermedad de Crohn y la colitis ulcerosa, es una afección inflamatoria del tracto gastrointestinal que padecen aproximadamente a siete... Más

Imaginología General

ver canal
Imagen: La inteligencia artificial predice las respuestas a la terapia para el cáncer de ovario (Fotografía cortesía de 123RF)

Modelo de IA combina pruebas de sangre y análisis de TC para predecir respuesta a terapia en pacientes con cáncer de ovario

El cáncer de ovario afecta anualmente a miles de mujeres y muchos diagnósticos se producen en etapas avanzadas debido a síntomas tempranos sutiles. El carcinoma de ovario seroso de... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: Los asistentes pueden descubrir productos y tecnología innovadores en las Exhibiciones Técnicas de RSNA 2023 (Fotografía cortesía de RSNA)

Exposiciones técnicas RSNA 2023 ofrecerá innovaciones en IA, impresión 3D y más

La 109.ª Asamblea Científica y Reunión Anual de la Sociedad Radiológica de América del Norte (RSNA, Oak Brook, IL, EUA), que se celebrará en Chicago del 26 al 30... Más
Copyright © 2000-2023 Globetech Media. All rights reserved.