Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Aprendizaje profundo mejora interpretación de ecografía de pulmón

Por el equipo editorial de MedImaging en español
Actualizado el 20 Feb 2024
Print article
Imagen: Diagrama de flujo de trabajo que muestra la segmentación de ultrasonido pulmonar en tiempo real con U-Net (Fotografía cortesía de Ultrasonics)
Imagen: Diagrama de flujo de trabajo que muestra la segmentación de ultrasonido pulmonar en tiempo real con U-Net (Fotografía cortesía de Ultrasonics)

La ecografía pulmonar (EGP) se ha convertido en una herramienta valiosa para la evaluación de la salud pulmonar debido a su seguridad y rentabilidad. Sin embargo, el desafío de interpretar imágenesde EGP, en gran parte debido a su dependencia de artefactos, genera variabilidad entre los operadores y obstaculiza su aplicación más amplia. Ahora, un nuevo estudio ha descubierto que el aprendizaje profundo puede mejorar la interpretación en tiempo real de la ecografía pulmonar. Este estudio encontró que un modelo de aprendizaje profundo entrenado en imágenes de ultrasonido pulmonar era capaz de segmentar e identificar artefactos en estas imágenes, como se demostró en pruebas en un modelo fantasma.

En el estudio, investigadores de la Universidad de Leeds (West Yorkshire, Reino Unido) emplearon una técnica de aprendizaje profundo para la segmentación multiclase en imágenes de ultrasonido de un fantasma de pulmón para entrenamiento. Esta técnica se utilizó para distinguir diversos objetos y artefactos, como costillas, líneas pleurales, líneas A, líneas B y confluencias de líneas B. El equipo desarrolló una versión modificada de la arquitectura U-Net para la segmentación de imágenes, con el objetivo de lograr un equilibrio entre la velocidad y la precisión del modelo. Durante la fase de entrenamiento, implementaron un proceso de aumento específico de ultrasonido para mejorar la capacidad del modelo para generalizar datos nuevos e invisibles, como transformaciones geométricas y aumentos específicos de ultrasonido. Luego, la red entrenada se aplicó para segmentar transmisiones de imágenes en vivo desde un sistema de ultrasonido en el punto de atención (POCUS) basado en un carrito, utilizando un transductor de matriz curva convexa para obtener imágenes del fantasma de entrenamiento y de los cuadros de flujo. El modelo, entrenado en una única unidad de procesamiento de gráficos, requirió unos 12 minutos de entrenamiento con 450 imágenes de ultrasonido.

El modelo demostró una alta tasa de precisión del 95,7 %, con puntuaciones de coeficiente de similitud de Dice de moderadas a altas. La aplicación en tiempo real del modelo a hasta 33,4 fotogramas por segundo mejoró significativamente la visualización de imágenes de ecografía pulmonar. Además, el equipo evaluó la correlación de píxeles entre las máscaras de segmentación etiquetadas manualmente y predichas por el modelo. A través de una matriz de confusión normalizada, observaron que el modelo predijo con precisión el 86,8 % de los píxeles etiquetados como costillas, el 85,4 % para la línea pleural y el 72,2 % para la confluencia de la línea B. Sin embargo, predijo correctamente sólo el 57,7 % de los píxeles de la línea A y el 57,9 % de los píxeles de la línea B.

Además, los investigadores emplearon el aprendizaje por transferencia con su modelo, utilizando el conocimiento de un conjunto de datos para mejorar el entrenamiento en un conjunto de datos relacionado. Este método arrojó coeficientes de similitud de Dice de 0,48 para derrame pleural simple, 0,32 para consolidación pulmonar y 0,25 para la línea pleural. Los hallazgos sugieren que este modelo podría ayudar en el entrenamiento de ultrasonido pulmonar y ayudar a cerrar las brechas de habilidades. Los investigadores también propusieron una medida semicuantitativa, la puntuación de artefactos de la línea B, que estima el porcentaje de un espacio intercostal ocupado por las líneas B. Esta medida podría estar potencialmente relacionada con la gravedad de las afecciones pulmonares.

"El trabajo futuro debería considerar la traducción de estos métodos a datos clínicos, considerando el aprendizaje por transferencia como un método viable para construir modelos que puedan ayudar en la interpretación de la ecografía pulmonar y reducir la variabilidad entre operadores asociada con esta técnica de imagen subjetiva", afirmaron los investigadores. .

Enlaces relacionados:
Universidad de Leeds

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
Ultrasound System
Aplio go
NMUS & MSK Ultrasound
InVisus Pro
Ultrasound Color LCD
U156W

Print article
Radcal

Canales

Radiografía

ver canal
Imagen: El prototipo del escáner TC elimina la necesidad de compresión física de la mama (foto cortesía de Quion Lowe y Lisa Dahm/U of A Cancer Center)

Nueva tecnología de detección de cáncer de mama podría ofrecer una alternativa superior a la mamografía

El cáncer de mama representa el 15,5 % de los nuevos casos de cáncer y el 7 % de las muertes relacionadas con el cáncer en los Estados Unidos. Aproximadamente el 13,1 % de las mujeres... Más

RM

ver canal
Imagen:  El software AiMIFY, impulsado por IA, ha recibido la autorización de la FDA como SaMD de clase II para RM cerebral (Foto cortesía de Bracco Diagnostics)

Software innovador impulsado por IA mejora significativamente las resonancias magnéticas cerebrales

La resonancia magnética (RM) con contraste utiliza agentes de contraste para iluminar tejidos o anomalías específicas, lo que mejora la visualización y proporciona información... Más

Medicina Nuclear

ver canal
Imagen: Los nuevos agentes de contraste se dirigen a dos proteínas implicadas en la osteoartritis y se pueden visualizar mediante un escáner de TC con conteo de fotones (foto cortesía de Pan Lab)

Nueva técnica de TC de conteo de fotones diagnostica la osteoartritis antes del desarrollo de los síntomas

La obtención de imágenes por rayos X ha evolucionado significativamente desde su introducción en 1895. Esta técnica es conocida por capturar imágenes rápidamente, lo que la hace ideal para situaciones... Más

Imaginología General

ver canal
Imagen: Los fumadores empedernidos pueden beneficiarse de la detección del cáncer de pulmón mediante TC de baja dosis (foto cortesía de 123RF)

Detección del cáncer de pulmón mediante TC de dosis baja puede beneficiar a los fumadores empedernidos

El cáncer de pulmón a menudo se diagnostica en una etapa tardía, con solo entre una quinta y una sexta parte de los pacientes sobreviviendo cinco años después del diagnóstico. Un nuevo informe sugiere... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen:La asociación tiene como objetivo ayudar a acelerar el acceso a tratamientos que salvan vidas (Foto cortesía de Philips)

Philips y Medtronic se asocian para el cuidado de accidentes cerebrovasculares

Un accidente cerebrovascular (ACV) es típicamente un incidente agudo causado principalmente por una obstrucción en un vaso sanguíneo del cerebro, lo cual interrumpe el suministro adecuado... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.