Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Sistema de diagnóstico analiza automáticamente imágenes ETT para identificar enfermedades cardíacas congénitas

Por el equipo editorial de MedImaging en español
Actualizado el 05 Jun 2024
Imagen: Figuras de CAM de imágenes de prueba (foto cortesía de SPJ; doi: 10.34133/investigación.0319)
Imagen: Figuras de CAM de imágenes de prueba (foto cortesía de SPJ; doi: 10.34133/investigación.0319)

La cardiopatía congénita (CC) es una de las anomalías congénitas más prevalentes en todo el mundo y presenta importantes desafíos financieros y de salud para los pacientes afectados. La detección y el tratamiento tempranos de la enfermedad coronaria pueden mejorar en gran medida el pronóstico y la calidad de vida de los niños. Sin embargo, los ecografistas inexpertos a menudo tienen dificultades para identificar con precisión la enfermedad coronaria mediante imágenes de ecocardiograma transtorácico (ETT). Por lo tanto, existe una necesidad apremiante de un sistema auxiliar de detección de enfermedades del corazón que permita a los ecografistas y médicos generales sin experiencia realizar evaluaciones de ETT de una manera simple y fácil de usar, mejorando así la tasa y el alcance de la detección de enfermedades del corazón.

Un nuevo sistema de detección de enfermedades coronarias desarrollado conjuntamente por investigadores de la Universidad Médica de Anhui (Anhui, China) para identificar las imágenes cardíacas ETT integra información de varias vistas y modalidades, visualiza la región de alto riesgo y predice la probabilidad de que el sujeto sea normal o tenga comunicación interauricular (CIA) o comunicación interventricular (CIV). Esto se logró mediante el desarrollo de una estructura de red jerárquica. Inicialmente, el modelo reconoce las dos modalidades utilizadas en ETT (2D y Doppler) e identifica las vistas cardíacas, que incluyen la vista apical de cuatro cámaras (A4C), la vista subxifoidea de eje largo (SXLAX) de las dos aurículas, la vista paraesternal de eje largo (PSLAX) del ventrículo izquierdo, la vista paraesternal de eje corto (PSSAX) de la aorta y la vista supraesternal de eje largo (SSLAX). Luego procesa las características para cada vista y cada modalidad utilizando la red troncal ResNet50.

Siguiendo el módulo de incorporación de características básicas, el modelo fusionó los datos de las cinco vistas y posteriormente fusionó la información derivada de los dos TTE modales. Luego, el clasificador generó las predicciones finales para cada sujeto y se creó una visualización de las regiones de alto riesgo para cada niño utilizando la estrategia Grad-CAM. Después de completar el examen ETT, el sistema auxiliar de diagnóstico de cardiopatía coronaria analizó automáticamente las imágenes ETT y evaluó la probabilidad de que el sujeto fuera normal o tuviera CIA o CIV. El equipo de investigación demostró que el modelo identificó eficazmente a niños con enfermedad coronaria mediante la integración de múltiples vistas y modalidades de ETT. Los hallazgos indican que este modelo podría ayudar significativamente a ampliar la detección de enfermedades coronarias y distinguir con precisión entre diferentes subtipos de enfermedades coronarias en niños.

Enlaces relacionados:
Universidad Médica de Anhui

New
Mobile X-Ray System
K4W
New
Miembro Plata
X-Ray QA Device
Accu-Gold+ Touch Pro
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
Computed Tomography System
Aquilion ONE / INSIGHT Edition

Canales

Radiografía

ver canal
Imagen: la AI evalúa las mamografías mejor que los radiólogos (foto cortesía de la Universidad de Radboud)

Estrategia híbrida con IA mejora la interpretación de mamografías

Los programas de detección del cáncer de mama dependen en gran medida de la interpretación de las mamografías por parte de radiólogos, un proceso que requiere mucho tiempo... Más

Medicina Nuclear

ver canal
Imagen: la herramienta de diagnóstico podría mejorar las decisiones de diagnóstico y tratamiento para pacientes con infecciones pulmonares crónicas (foto cortesía de SNMMI)

Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar

Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más

Imaginología General

ver canal
Imágenes de resultado positivo en examen de detección de colonografía por TC en un hombre asintomático de 67 años (foto cortesía de Radiology)

La colonografía por TC supera a la prueba de ADN en heces para la detección del cáncer de colon

Dado que el cáncer colorrectal sigue siendo la segunda causa principal de muertes relacionadas con el cáncer a nivel mundial, la detección temprana mediante pruebas de cribado es fundamental... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.