Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Una herramientas de IA identifica el tipo de cáncer y los cambios en los tumores de pulmón

Por el equipo editorial de MedImaging en español
Actualizado el 10 Oct 2018
Imagen: Una herramienta de IA analiza una porción de tejido canceroso para crear un mapa que diferencia dos tipos de cáncer de pulmón, con el carcinoma escamocelular en rojo, el carcinoma escamocelulares de pulmón en azul y tejido normal de pulmón en gris (Fotografía cortesía de Cision).
Imagen: Una herramienta de IA analiza una porción de tejido canceroso para crear un mapa que diferencia dos tipos de cáncer de pulmón, con el carcinoma escamocelular en rojo, el carcinoma escamocelulares de pulmón en azul y tejido normal de pulmón en gris (Fotografía cortesía de Cision).
Investigadores de la Facultad de Medicina de la Universidad de Nueva York (NYU) (Nueva York, NY, EUA) han desarrollado un programa informático nuevo que puede analizar las imágenes de los tumores pulmonares de los pacientes, especificar los tipos de cáncer e incluso identificar genes alterados que promueven el crecimiento celular anormal. En su estudio, los investigadores encontraron que el programa de inteligencia artificial (IA) o de "aprendizaje automático" podía diferenciar, con 97% de exactitud, entre el adenocarcinoma y el carcinoma escamocelular, dos tipos de cáncer de pulmón que los patólogos experimentados a veces luchan por clasificar adecuadamente sin contar con pruebas confirmatorias. Además, el estudio encontró que la IA también pudo determinar a partir del análisis de las imágenes si las versiones anormales de seis genes relacionados con el cáncer de pulmón, incluidos EGFR, KRAS y TP53, estaban presentes en las células, con una exactitud que oscilaba entre el 73% y el 86%, dependiendo del gen.

Para su estudio, los investigadores diseñaron técnicas estadísticas que dieron a su programa la capacidad de "aprender" cómo mejorar en una tarea, pero sin que se les dijera exactamente cómo. Dichos programas crean reglas y modelos matemáticos que permiten la toma de decisiones con base en ejemplos de datos que se incorporan a ellos, y el programa se vuelve "más inteligente" a medida que crece la cantidad de datos de capacitación.

Los métodos nuevos de IA, inspirados por las redes de células nerviosas en el cerebro, utilizan circuitos cada vez más complejos para procesar información en capas, con cada paso alimentando la información del siguiente, y asigna más o menos importancia a cada información en el camino. Los investigadores entrenaron una red neuronal convolucional profunda, la Inception v3 de Google, para analizar imágenes de láminas obtenidas del Atlas del Genoma del Cáncer, una base de datos de imágenes a las que ya se les habían determinado los diagnósticos de cáncer. Esto permitió a los investigadores medir qué tan bien podría entrenarse su programa para clasificar de manera exacta y automática el tejido normal frente al enfermo.

El estudio encontró que aproximadamente la mitad del pequeño porcentaje de imágenes de tumores clasificadas erróneamente por el programa de IA del estudio también fueron clasificadas erróneamente por los patólogos, lo que destaca la dificultad de diferenciar entre los dos tipos de cáncer de pulmón. Por otro lado, 45 de las 54 imágenes clasificadas incorrectamente por al menos uno de los patólogos en el estudio fueron asignadas al tipo de cáncer correcto por el programa de aprendizaje automático, lo que sugiere que la IA podría ofrecer una segunda opinión útil.

Los investigadores ahora planean continuar entrenando su programa de inteligencia artificial con datos hasta que pueda determinar qué genes están mutados en un cáncer dado con más del 90% de exactitud, y luego comenzarán a buscar la aprobación del gobierno para utilizar la tecnología clínicamente y en el diagnóstico de varios tipos de cáncer.

"Retrasar el inicio del tratamiento contra el cáncer nunca es bueno", dijo el autor principal del estudio, Aristotelis Tsirigos, PhD, profesor asociado en el Departamento de Patología de la Facultad de Medicina de la Universidad de Nueva York y en el Centro de Cáncer Perlmutter Langone Health de la Universidad de Nueva York. "Nuestro estudio proporciona pruebas sólidas de que un método de IA podrá determinar instantáneamente el subtipo de cáncer y el perfil mutacional para que los pacientes comiencen con terapias dirigidas antes".

"En nuestro estudio, nos entusiasmó mejorar las exactitudes a nivel de patólogo y demostrar que la IA puede descubrir patrones previamente desconocidos en las características visibles de las células cancerosas y los tejidos que las rodean", dijo el coautor correspondiente del estudio, Narges Razavian. PhD, profesor asistente en los departamentos de Radiología y Salud de la Población. "La sinergia entre los datos y el poder computacional crea oportunidades sin precedentes para mejorar tanto la práctica como la ciencia de la medicina".

Enlace relacionado:
Facultad de Medicina de la Universidad de Nueva York

Digital Intelligent Ferromagnetic Detector
Digital Ferromagnetic Detector
Diagnostic Ultrasound System
DC-80A
Digital Radiographic System
OMNERA 300M
Digital X-Ray Detector Panel
Acuity G4

Canales

Radiografía

ver canal
Imagen: la prueba de detección \"dos por uno\" podría ayudar a detectar las principales causas de muerte de mujeres en todo el mundo (foto cortesía de Shutterstock)

Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... Más

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: los cristales de perovskita se cultivan en condiciones cuidadosamente controladas a partir de la masa fundida (foto cortesía de Mercouri Kanatzidis/Northwestern University)

Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico

Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más

Imaginología General

ver canal
Imagen: Concepto de los SCNP fotosensibles (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste

Las tecnologías de imagen médica enfrentan desafíos constantes para capturar vistas precisas y detalladas de los procesos internos, especialmente en enfermedades como el cáncer,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.