Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




Imágenes sintetizadas de rayos X para capacitación de programas de IA

Por el equipo editorial de MedImaging en español
Actualizado el 08 Aug 2018
Imagen: Rayos X (I) junto a una radiografía sintetizada creada por DCGAN. Debajo de las imágenes de rayos X se encuentran los mapas de calor correspondientes (Fotografía cortesía de Hojjat Salehinejad/MIMLab).
Imagen: Rayos X (I) junto a una radiografía sintetizada creada por DCGAN. Debajo de las imágenes de rayos X se encuentran los mapas de calor correspondientes (Fotografía cortesía de Hojjat Salehinejad/MIMLab).
Un nuevo estudio describe cómo se pueden usar los rayos X generados por computadora para aumentar los conjuntos de entrenamiento de la inteligencia artificial (IA).

Para generar y mejorar continuamente las radiografías artificiales, los investigadores de la Universidad de Toronto (Canadá) utilizaron algoritmos de red adversarial generativa profunda convolucional (DCGAN, por sus siglas en inglés), que están formados por dos redes: una que genera las imágenes, y la otra que intenta discriminar las imágenes sintéticas de las imágenes reales. Las dos redes se entrenan continuamente hasta que alcanzan un punto en el que el discriminador no puede diferenciar las imágenes reales de las sintetizadas. Una vez que se crea una cantidad suficiente de rayos X artificiales, se utilizan para entrenar a otro DCGAN que puede clasificar las imágenes en consecuencia.

Luego, los investigadores compararon la exactitud del conjunto de datos aumentado artificialmente con el original cuando se alimentaron a través de su sistema de IA, y encontraron que la exactitud de clasificación mejoró en un 20% para las condiciones comunes. Para algunas condiciones raras, la exactitud mejoró hasta un 40%. Una ventaja del método es que como los rayos X sintéticos no son reales, el conjunto de datos puede estar fácilmente disponible para los investigadores fuera de las instalaciones del hospital sin violar las preocupaciones de privacidad. El estudio fue presentado en la Conferencia Internacional de IEEE sobre Acústica, Procesamiento de Voz y Señales, celebrada en abril de 2018 en Calgary (Canadá).

“En cierto sentido, utilizamos el aprendizaje automático para hacer aprendizaje automático”, dijo el autor principal y presentador del estudio, el profesor Shahrokh Valaee, PhD, del Laboratorio de Inteligencia Artificial en Medicina (MIMLab). “Creamos radiografías simuladas que reflejan ciertas condiciones raras para que podamos combinarlas con rayos X reales y poder tener una base de datos lo suficientemente grande como para entrenar las redes neuronales para identificar estas afecciones en otros rayos X”.

“El aprendizaje profundo solo funciona si el volumen de datos de entrenamiento es lo suficientemente grande, y esta es una forma de garantizar que tengamos redes neuronales que puedan clasificar imágenes con alta precisión”, concluyó el profesor Valaee. “Hemos podido demostrar que los datos artificiales generados por GAN convolucionales profundas se pueden utilizar para aumentar los conjuntos de datos reales. Esto proporciona una mayor cantidad de datos para el entrenamiento y mejora el desempeño de estos sistemas en la identificación de condiciones raras”.




Pocket Fetal Doppler
CONTEC10C/CL
Breast Localization System
MAMMOREP LOOP
Mammography System (Analog)
MAM VENUS
Digital Color Doppler Ultrasound System
MS22Plus

Canales

Radiografía

ver canal
Imagen: la prueba de detección \"dos por uno\" podría ayudar a detectar las principales causas de muerte de mujeres en todo el mundo (foto cortesía de Shutterstock)

Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... Más

Ultrasonido

ver canal
Imagen: el parche de ultrasonido realiza simultáneamente imágenes de ultrasonido y medición de la presión arterial de ambas arterias carótidas (Fotografía cortesía de KIST)

Parche de ultrasonido desechable supera el rendimiento de los dispositivos existentes

Los dispositivos portátiles de ultrasonido se utilizan ampliamente en el diagnóstico, el monitoreo de la rehabilitación y la telemedicina. Sin embargo, la mayoría de los modelos... Más

Medicina Nuclear

ver canal
Imagen: el Dr. Glenn Bauman, científico de LHSCRI, posa frente al escáner PET (Foto cortesía de LHSCRI).

Nueva solución de imagen mejora la supervivencia de los pacientes con cáncer de próstata recurrente

La detección del cáncer de próstata recurrente sigue siendo uno de los mayores desafíos en oncología, ya que los métodos de imagen estándar, como las g... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.