Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Download Mobile App




Un sistema automatizado identifica el tejido mamario denso

Por el equipo editorial de Medimaging en español
Actualizado el 06 Nov 2018
Print article
Imagen: un algoritmo de inteligencia artificial puede detectar el tejido mamario denso (Fotografía cortesía de MIT).
Imagen: un algoritmo de inteligencia artificial puede detectar el tejido mamario denso (Fotografía cortesía de MIT).
Un modelo automatizado de aprendizaje profundo (AP) puede evaluar el tejido mamario denso en las mamografías de manera tan confiable como los radiólogos expertos, afirma un nuevo estudio.

Desarrollado por investigadores del Instituto Tecnológico de Massachusetts (MIT, Cambridge, MA, EUA) y de la Facultad de Medicina de Harvard (HMS; Boston, MA, EUA), el modelo de AP se basa en una red neuronal convolucional profunda (CNN) entrenada para evaluar el sistema de datos e informes de las imágenes mamarias (BI-RADS), es decir, la densidad mamaria. Por ejemplo, grasa, dispersa, heterogénea y densa, basada en la interpretación experta de 41.479 mamografías de cribado digital obtenidas en 27.684 mujeres desde enero de 2009 hasta mayo de 2011. El algoritmo fue ensayado en un conjunto de pruebas de 8.677 mamografías en 5.741 mujeres.

Además, cinco radiólogos realizaron un estudio de lectura en 500 mamografías seleccionadas al azar del conjunto de prueba. Finalmente, el algoritmo se implementó en la práctica clínica habitual, donde ocho radiólogos revisaron 10.763 mamografías consecutivas evaluadas con el modelo. Se comparó la concordancia en la categoría BI-RADS para tres conjuntos de lecturas: radiólogos en el conjunto de pruebas, radiólogos que trabajan por consenso en el conjunto de estudio del lector y radiólogos en el conjunto de implementación clínica. Las lecturas se compararon en 5.000 muestras de implementación para evaluar la importancia.

Los resultados revelaron que el modelo de AP mostró una buena concordancia con los radiólogos en el conjunto de pruebas, y con los radiólogos en consenso en el conjunto de estudio del lector. Además, hubo muy buena concordancia con los radiólogos en el conjunto de implementación clínica; para la categorización binaria de senos densos o no densos, el radiólogo de interpretación aceptó 10.149 de 10.763 (94%) de las evaluaciones usando el AP. En las cuatro categorías de BI-RADS, el algoritmo de AP fue equivalente a las evaluaciones de los radiólogos en un 90%. El estudio fue publicado el 16 de octubre de 2018 en la revista Radiology.

"La densidad mamaria es un factor de riesgo independiente que impulsa la forma en que nos comunicamos con las mujeres sobre su riesgo de cáncer. Nuestra motivación fue crear una herramienta exacta y consistente que se pueda compartir y utilizar en todos los sistemas de atención de salud", dijo el autor del estudio, el estudiante de doctorado Adam Yala del Laboratorio de Ciencias de la Computación e Inteligencia Artificial (CSAIL) del MIT. "Cuando los radiólogos saquen un examen en sus estaciones de trabajo, verán la calificación asignada del modelo, que luego aceptan o rechazan. Se tarda menos de un segundo por imagen ... [y puede] escalarse de forma fácil y económica en todos los hospitales".

Se calcula que más del 40% de las mujeres tienen tejido mamario denso, que por sí solo aumenta el riesgo de cáncer de mama. Además, el tejido denso puede enmascarar los cánceres en la mamografía, lo que dificulta la detección.

Enlace relacionado:
Instituto Tecnológico de Massachusetts
Facultad de Medicina de Harvard




Print article
Radcal

Canales

Ultrasonido

ver canal
Imagen: La aplicación Clarius Live permite compartir los exámenes de ecografía (Fotografía cortesía de Clarius MobileHealth).

Solución de telemedicina simplifica las consultas del ultrasonido

Una nueva función de transmisión en vivo permite a los profesionales médicos transmitir sus ecografías en tiempo real a cualquier navegador web estándar en dispositivos de escritorio y móviles.... Más

TI en Imaginología

ver canal
Imagen: El software empresarial uPath proporciona mejores herramientas de patología digital (Fotografía cortesía de Roche).

Un software de patología digital mejora la eficiencia del flujo de trabajo

Una plataforma de software novedosa reduce drásticamente los tiempos de generación de imágenes, integra el análisis automatizado de imágenes y permite un mejor intercambio de casos entre patólogos.... Más

Industria

ver canal
Imagen: Una investigación nueva de Google muestra cómo la IA puede predecir el cáncer de pulmón mediante tomografías computarizadas (Fotografía cortesía de Getty Images).

Google muestra que la IA puede predecir el cáncer de pulmón a partir de los exámenes de TC

Google LLC (Mountain View, CA, EUA) ha compartido nuevas investigaciones que demuestran cómo la inteligencia artificial (IA) puede predecir el cáncer de pulmón con el fin de aumentar las posibilidades... Más
Copyright © 2000-2019 Globetech Media. All rights reserved.