Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




La imagenología hiperespectral es una ayuda en la neurocirugía del cerebro

Por el equipo editorial de MedImaging en español
Actualizado el 27 Nov 2018
Imagen: Imagen hiperespectral del cerebro; el tumor está indicado por píxeles rojos (Fotografía cortesía del proyecto HELICoiD).
Imagen: Imagen hiperespectral del cerebro; el tumor está indicado por píxeles rojos (Fotografía cortesía del proyecto HELICoiD).
Un nuevo proyecto de investigación adapta la imagen hiperespectral (HSI, por sus siglas en inglés) para discriminar entre los tejidos sanos y los malignos en el cerebro durante los procedimientos quirúrgicos.

Investigadores de la Universidad de Las Palmas de Gran Canaria (ULPGC; España), el Colegio Imperial de Londres (ICL; Reino Unido), la Universidad Politécnica de Madrid (UPM; España) y otras instituciones que participan en el proyecto Detección del Cáncer mediante Imagenología HipErspectraL (HELICoiD) explotan la HSI para desarrollar un dispositivo capaz de delimitar el tejido tumoral canceroso del tejido cerebral normal durante las operaciones neuroquirúrgicas, lo que permite a los cirujanos minimizar el margen del tejido sano necesario para evitar una metástasis potencial.

El dispositivo prototipo está compuesto por dos cámaras hiperespectrales que cubren un rango espectral de 400–1.700 nm. Se utiliza un acelerador de hardware para aumentar la velocidad del algoritmo de detección de cáncer cerebral con imagenología hiperespectral y lograr el procesamiento durante el tiempo de la cirugía, desarrollado utilizando un conjunto de datos etiquetados compuesto por más de 300.000 firmas espectrales. En un estudio preliminar, los mapas temáticos de siete imágenes hiperespectrales de tejido cerebral in vivo capturadas y procesadas durante operaciones neuroquirúrgicas demostraron que el sistema es capaz de discriminar el tejido normal del tumoral del cerebro en un minuto.

Para lograr esta discriminación en tiempo real, se procesan enormes cantidades de información capturadas por los sensores utilizando un algoritmo de filtrado K-Nearest Neighbors (KNN), que se optimiza y paraleliza mediante la utilización de la tecnología de unidad de procesamiento gráfico (GPU) para el procesamiento en tiempo real durante los procedimientos quirúrgicos del cáncer de cerebro. La versión paralela del algoritmo de filtrado de KNN puede manejar efectivamente los requisitos computacionales extremadamente altos necesarios para evaluar diferentes clases simultáneamente. El estudio que describe el proceso de desarrollo de HIS se publicó en la edición de julio de 2018 de la revista Sensors.

“Ellos, siendo los neurocirujanos, tenían un problema y nosotros teníamos una tecnología. Pero el tumor y el cerebro de cada paciente producen una huella digital espectral única, por lo que los primeros algoritmos para hacer imágenes utilizables se demoraron media hora; ahora el tiempo total es de alrededor de seis segundos”, dijo el coautor del estudio, el profesor Gustavo Marrero Callicó, PhD, de la ULPGC. “Ahora están equipados para proporcionar a los neurocirujanos una herramienta para operar en los márgenes más estrechos en tiempo real. El siguiente objetivo es refinar la base de datos para que sea lo suficientemente general como para detectar cánceres en muchas situaciones”.

La HSI puede ayudar a adquirir un gran número de bandas espectrales en todo el espectro electromagnético (tanto dentro como fuera del rango visual) con una resolución espacial muy fina. Tan fina, de hecho, que para cada píxel de imagen se puede detectar un espectro completo de color. Usando esta información y algoritmos complejos de clasificación, es posible determinar qué material o sustancia se encuentra en cada píxel.

Enlace relacionado:
Universidad de Las Palmas de Gran Canaria
Colegio Imperial de Londres
Universidad Politécnica de Madrid



Digital X-Ray Detector Panel
Acuity G4
Medical Radiographic X-Ray Machine
TR30N HF
Biopsy Software
Affirm® Contrast
X-ray Diagnostic System
FDX Visionary-A

Canales

Radiografía

ver canal
Imagen: un algoritmo de aprendizaje profundo detecta los niveles de calcio en la arteria coronaria en tomografías computarizadas de tórax (foto cortesía de Adobe Stock)

IA detecta enfermedades cardíacas ocultas en TC de tórax existentes

El calcio en la arteria coronaria (CAC) es un indicador importante del riesgo cardiovascular, pero su evaluación suele requerir una tomografía computarizada (TC) especializada (gated) que... Más

RM

ver canal
Imagen: los investigadores utilizaron RM y pantalones inspirados en la NASA para mejorar las pruebas de esfuerzo y revelar problemas cardíacos ocultos (foto cortesía de UTA)

Nueva técnica de resonancia magnética revela problemas cardíacos ocultos

Las pruebas de esfuerzo tradicionales, realizadas en una máquina de resonancia magnética (RM), requieren que los pacientes permanezcan acostados, una posición que mejora artificialmente... Más

Ultrasonido

ver canal
Imagen: el nuevo dispositivo implantable para el tratamiento del dolor crónico es pequeño y flexible (foto cortesía de The Zhou Lab at USC)

Dispositivo inalámbrico para el manejo del dolor crónico reduce la necesidad de analgésicos y cirugía

El dolor crónico afecta a millones de personas en todo el mundo, lo que a menudo provoca discapacidad a largo plazo y dependencia de opioides, los cuales conllevan riesgos importantes de efectos... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.