Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

La imagenología hiperespectral es una ayuda en la neurocirugía del cerebro

Por el equipo editorial de Medimaging en español
Actualizado el 27 Nov 2018
Print article
Imagen: Imagen hiperespectral del cerebro; el tumor está indicado por píxeles rojos (Fotografía cortesía del proyecto HELICoiD).
Imagen: Imagen hiperespectral del cerebro; el tumor está indicado por píxeles rojos (Fotografía cortesía del proyecto HELICoiD).
Un nuevo proyecto de investigación adapta la imagen hiperespectral (HSI, por sus siglas en inglés) para discriminar entre los tejidos sanos y los malignos en el cerebro durante los procedimientos quirúrgicos.

Investigadores de la Universidad de Las Palmas de Gran Canaria (ULPGC; España), el Colegio Imperial de Londres (ICL; Reino Unido), la Universidad Politécnica de Madrid (UPM; España) y otras instituciones que participan en el proyecto Detección del Cáncer mediante Imagenología HipErspectraL (HELICoiD) explotan la HSI para desarrollar un dispositivo capaz de delimitar el tejido tumoral canceroso del tejido cerebral normal durante las operaciones neuroquirúrgicas, lo que permite a los cirujanos minimizar el margen del tejido sano necesario para evitar una metástasis potencial.

El dispositivo prototipo está compuesto por dos cámaras hiperespectrales que cubren un rango espectral de 400–1.700 nm. Se utiliza un acelerador de hardware para aumentar la velocidad del algoritmo de detección de cáncer cerebral con imagenología hiperespectral y lograr el procesamiento durante el tiempo de la cirugía, desarrollado utilizando un conjunto de datos etiquetados compuesto por más de 300.000 firmas espectrales. En un estudio preliminar, los mapas temáticos de siete imágenes hiperespectrales de tejido cerebral in vivo capturadas y procesadas durante operaciones neuroquirúrgicas demostraron que el sistema es capaz de discriminar el tejido normal del tumoral del cerebro en un minuto.

Para lograr esta discriminación en tiempo real, se procesan enormes cantidades de información capturadas por los sensores utilizando un algoritmo de filtrado K-Nearest Neighbors (KNN), que se optimiza y paraleliza mediante la utilización de la tecnología de unidad de procesamiento gráfico (GPU) para el procesamiento en tiempo real durante los procedimientos quirúrgicos del cáncer de cerebro. La versión paralela del algoritmo de filtrado de KNN puede manejar efectivamente los requisitos computacionales extremadamente altos necesarios para evaluar diferentes clases simultáneamente. El estudio que describe el proceso de desarrollo de HIS se publicó en la edición de julio de 2018 de la revista Sensors.

“Ellos, siendo los neurocirujanos, tenían un problema y nosotros teníamos una tecnología. Pero el tumor y el cerebro de cada paciente producen una huella digital espectral única, por lo que los primeros algoritmos para hacer imágenes utilizables se demoraron media hora; ahora el tiempo total es de alrededor de seis segundos”, dijo el coautor del estudio, el profesor Gustavo Marrero Callicó, PhD, de la ULPGC. “Ahora están equipados para proporcionar a los neurocirujanos una herramienta para operar en los márgenes más estrechos en tiempo real. El siguiente objetivo es refinar la base de datos para que sea lo suficientemente general como para detectar cánceres en muchas situaciones”.

La HSI puede ayudar a adquirir un gran número de bandas espectrales en todo el espectro electromagnético (tanto dentro como fuera del rango visual) con una resolución espacial muy fina. Tan fina, de hecho, que para cada píxel de imagen se puede detectar un espectro completo de color. Usando esta información y algoritmos complejos de clasificación, es posible determinar qué material o sustancia se encuentra en cada píxel.

Enlace relacionado:
Universidad de Las Palmas de Gran Canaria
Colegio Imperial de Londres
Universidad Politécnica de Madrid




Print article
Radcal

Canales

Radiografía

ver canal
Imagen: Ejemplos de dosímetros de extremidades Thermo Fisher (Fotografía cortesía de Thermo Fisher Scientific).

Un servicio nuevo de monitorización simplifica los programas de seguridad de la radiación

Un nuevo servicio de monitorización de dosimetría permite a las instalaciones con requisitos de seguridad radiológica simplificar la gestión de sus programas de seguridad. Los Servicios de Dosimetría... Más

Ultrasonido

ver canal
Imagen: Un estudio nuevo afirma que el software de inteligencia artificial (IA) puede ayudar a identificar la información de los marcapasos más rápido que los métodos actuales (Fotografía cortesía de iStock).

La IA mejora la identificación mediante rayos X de los marcapasos

Según un estudio nuevo, el software de inteligencia artificial (IA) puede ayudar a determinar la marca y el modelo de los dispositivos de ritmo cardíaco (DRC) implantados con mayor exactitud y rapidez... Más

Medicina Nuclear

ver canal
Imagen: La plataforma de radiocirugía giroscópica ZAP-X (Fotografía cortesía de ZAP Surgical Systems).

Una plataforma de radiocirugía giroscópica hace la ablación de tumores de cerebro

Una plataforma nueva de radioterapia (RT) administra radiocirugía estereotáctica de dosis altas (SRS) para extirpar de forma no invasiva los tumores cerebrales y otras afecciones intracraneales seleccionadas.... Más

TI en Imaginología

ver canal
Imagen: El software empresarial uPath proporciona mejores herramientas de patología digital (Fotografía cortesía de Roche).

Un software de patología digital mejora la eficiencia del flujo de trabajo

Una plataforma de software novedosa reduce drásticamente los tiempos de generación de imágenes, integra el análisis automatizado de imágenes y permite un mejor intercambio de casos entre patólogos.... Más

Industria

ver canal
Imagen: Se proyecta que el mercado global de protección contra la radiación médica alcance un valor de mil millones de dólares para fines de 2022 (Fotografía cortesía de TMR).

El mercado de protección contra la radiación médica será superior a los mil millones de dólares en 2022

Se proyecta que el mercado global de protección contra la radiación médica registre una tasa de crecimiento anual compuesta de 4,8% durante el período de pronóstico de 2017 a 2022 para alcanzar un valor... Más
Copyright © 2000-2019 Globetech Media. All rights reserved.