Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




IA puede predecir necesidad de TC en pacientes pediátricos después de una lesión cerebral traumática leve

Por el equipo editorial de MedImaging en español
Actualizado el 12 Apr 2022
Imagen: Las redes neuronales profundas pueden predecir la necesidad de TC en lesiones cerebrales traumáticas leves pediátricas (Fotografía cortesía de Unsplash)
Imagen: Las redes neuronales profundas pueden predecir la necesidad de TC en lesiones cerebrales traumáticas leves pediátricas (Fotografía cortesía de Unsplash)

Solo el 10 % de las tomografías computarizadas revelan hallazgos positivos en lesiones cerebrales traumáticas leves, lo que genera preocupaciones sobre su uso excesivo en esta población. Se han desarrollado una serie de reglas clínicas para abordar este problema, pero aún sufren limitaciones en su especificidad. Los modelos de aprendizaje automático se han aplicado en estudios limitados para imitar las reglas clínicas; sin embargo, aún se necesitan mejoras adicionales en términos de sensibilidad y especificidad equilibradas. En un nuevo estudio, los investigadores descubrieron que las redes neuronales profundas se pueden usar para predecir la necesidad de una TC en lesiones cerebrales traumáticas leves pediátricas.

Para su estudio, los investigadores de la Universidad de Queensland (Brisbane, Australia) aplicaron un modelo de redes neuronales artificiales profundas (DANN) y un algoritmo de umbral de dureza de instancia para reproducir la regla clínica de la Red de Investigación Aplicada de Atención de Emergencias Pediátricas (PECARN) en una población pediátrica recopilada como parte del estudio PECARN entre 2004 y 2006. El modelo DANN se aplicó utilizando 14.983 pacientes menores de 18 años con puntajes de la escala de coma de Glasgow ≥ 14 que tenían informes de TC de la cabeza. Las características clínicas de las reglas PECARN, PECARN-A (grupo A, edad < 2 años) y PECARN-B (grupo B, edad ≤ 2 años), se utilizaron para evaluar directamente el modelo. La exactitud, la sensibilidad, la precisión y la especificidad promedio se calcularon comparando el resultado de predicción del modelo con el informado por los investigadores de PECARN. El umbral de dureza de la instancia y el modelo DANN se aplicaron para predecir la necesidad de TC en pacientes pediátricos utilizando una validación cruzada quíntuple.

Con base en los hallazgos, los investigadores concluyeron que un modelo DANN logró una sensibilidad comparable y una especificidad sobresaliente para replicar la regla clínica PECARN y predecir la necesidad de TC en pacientes pediátricos después de una lesión cerebral traumática leve en comparación con la regla clínica original derivada estadísticamente.

Enlaces relacionados:
Universidad de Queensland  

Mammography System (Analog)
MAM VENUS
Computed Tomography System
Aquilion ONE / INSIGHT Edition
Radiation Safety Barrier
RayShield Intensi-Barrier
Diagnostic Ultrasound System
DC-80A

Canales

Radiografía

ver canal
Imagen: La IA predice la progresión de la osteoartritis (Foto cortesía de la Universidad de Surrey)

La IA genera radiografías futuras de rodilla para predecir el riesgo de progresión de la osteoartritis

La osteoartritis, una enfermedad articular degenerativa que afecta a más de 500 millones de personas en todo el mundo, es la principal causa de discapacidad en adultos mayores. Las herramientas... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.