Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA puede predecir necesidad de TC en pacientes pediátricos después de una lesión cerebral traumática leve

Por el equipo editorial de MedImaging en español
Actualizado el 12 Apr 2022
Imagen: Las redes neuronales profundas pueden predecir la necesidad de TC en lesiones cerebrales traumáticas leves pediátricas (Fotografía cortesía de Unsplash)
Imagen: Las redes neuronales profundas pueden predecir la necesidad de TC en lesiones cerebrales traumáticas leves pediátricas (Fotografía cortesía de Unsplash)

Solo el 10 % de las tomografías computarizadas revelan hallazgos positivos en lesiones cerebrales traumáticas leves, lo que genera preocupaciones sobre su uso excesivo en esta población. Se han desarrollado una serie de reglas clínicas para abordar este problema, pero aún sufren limitaciones en su especificidad. Los modelos de aprendizaje automático se han aplicado en estudios limitados para imitar las reglas clínicas; sin embargo, aún se necesitan mejoras adicionales en términos de sensibilidad y especificidad equilibradas. En un nuevo estudio, los investigadores descubrieron que las redes neuronales profundas se pueden usar para predecir la necesidad de una TC en lesiones cerebrales traumáticas leves pediátricas.

Para su estudio, los investigadores de la Universidad de Queensland (Brisbane, Australia) aplicaron un modelo de redes neuronales artificiales profundas (DANN) y un algoritmo de umbral de dureza de instancia para reproducir la regla clínica de la Red de Investigación Aplicada de Atención de Emergencias Pediátricas (PECARN) en una población pediátrica recopilada como parte del estudio PECARN entre 2004 y 2006. El modelo DANN se aplicó utilizando 14.983 pacientes menores de 18 años con puntajes de la escala de coma de Glasgow ≥ 14 que tenían informes de TC de la cabeza. Las características clínicas de las reglas PECARN, PECARN-A (grupo A, edad < 2 años) y PECARN-B (grupo B, edad ≤ 2 años), se utilizaron para evaluar directamente el modelo. La exactitud, la sensibilidad, la precisión y la especificidad promedio se calcularon comparando el resultado de predicción del modelo con el informado por los investigadores de PECARN. El umbral de dureza de la instancia y el modelo DANN se aplicaron para predecir la necesidad de TC en pacientes pediátricos utilizando una validación cruzada quíntuple.

Con base en los hallazgos, los investigadores concluyeron que un modelo DANN logró una sensibilidad comparable y una especificidad sobresaliente para replicar la regla clínica PECARN y predecir la necesidad de TC en pacientes pediátricos después de una lesión cerebral traumática leve en comparación con la regla clínica original derivada estadísticamente.

Enlaces relacionados:
Universidad de Queensland  

Half Apron
Demi
Computed Tomography System
Aquilion ONE / INSIGHT Edition
Digital X-Ray Detector Panel
Acuity G4
New
MRI System
nanoScan MRI 3T/7T

Canales

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: los cristales de perovskita se cultivan en condiciones cuidadosamente controladas a partir de la masa fundida (foto cortesía de Mercouri Kanatzidis/Northwestern University)

Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico

Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.