Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.

Inteligencia artificial de próxima generación mejora el diagnóstico por imágenes médicas

Por el equipo editorial de MedImaging en español
Actualizado el 08 Mar 2023
Print article
Imagen: El nuevo proyecto crea IA de próxima generación para mejorar el diagnóstico (Fotografía cortesía de la Universidad de Houston)
Imagen: El nuevo proyecto crea IA de próxima generación para mejorar el diagnóstico (Fotografía cortesía de la Universidad de Houston)

A pesar de los notables avances en inteligencia artificial (IA), los estudios han encontrado que es posible que no pueda mejorar la precisión de los diagnósticos médicos. Por lo tanto, es vital que los algoritmos de diagnóstico asistidos por computadora de próxima generación sean interactivos y altamente precisos para utilizar el verdadero potencial de la IA para mejorar el diagnóstico médico.

La Universidad de Houston (Houston, TX, EUA) recibió recientemente una subvención del Instituto Nacional del Cáncer para su próximo proyecto de creación de un nuevo sistema de IA que se enfocará en mejorar el diagnóstico del cáncer de pulmón. Este proyecto planea desarrollar un marco de colaboración humano-IA, que utilizará el seguimiento de la mirada, la ingeniería inversa intencional y el aprendizaje de refuerzo para determinar cuándo y cómo un sistema de IA debe interactuar con los radiólogos para realizar un diagnóstico médico.

El objetivo principal de este proyecto es crear una interfaz fácil de usar y que interfiera mínimamente que permita la interacción entre el radiólogo y la IA. Se centrará en dos aplicaciones clínicas principales: detección de nódulos pulmonares y embolia pulmonar. El cáncer de pulmón se ubica como el segundo cáncer más común, y la embolia pulmonar es la tercera causa más común de muerte cardiovascular. Este proyecto investigará más a fondo asuntos que han sido poco exploradas en gran medida, como cuándo y cómo los sistemas de IA deben interactuar con los radiólogos y cómo modelar los procesos de exploración visual de los radiólogos.

“Estudiar cómo la IA puede ayudar a los radiólogos a reducir los errores de diagnóstico de estas enfermedades tendrá un impacto clínico significativo”, dijo Hien Van Nguyen, profesor asociado de ingeniería eléctrica e informática de la Universidad de Houston, quien dirige el proyecto. “Nuestros enfoques son creativos y originales porque representan una desviación sustancial de los algoritmos existentes. En lugar de proporcionar continuamente predicciones de IA, nuestro sistema utiliza un agente de aprendizaje de refuerzo asistido por la mirada para determinar el momento óptimo y el tipo de información para presentar a los radiólogos. Nuestro proyecto promoverá las estrategias para diseñar interfaces de usuario para la interacción médico-IA mediante la combinación de metodologías novedosas de IA y detección con la mirada”.

Enlaces relacionados:
Universidad de Houston

Proveedor de oro
Ultrasound Phantom
Multi-Purpose Multi-Tissue Ultrasound Phantom - Model 040GSE
New
Retrofittable DR Mammography Solution
AirDR M
New
X-Ray Wall Stand
PROVERT
New
Densitometry & Data Management Solution
QuickScan Touch Plus

Print article
Radcal
FIME - Informa

Canales

Radiografía

ver canal
Imagen: Los cristales de BiOI similares al rubí pueden mejorar la seguridad de las imágenes médicas al reducir las intensidades de los rayos X dañinos (Fotografía cortesía de la Universidad de Cambridge)

Material de celdas solares sostenible podría revolucionar imágenes médicas

El uso de rayos X para obtener imágenes internas del cuerpo ha cambiado drásticamente los diagnósticos médicos no invasivos. Sin embargo, la alta dosis de rayos X requerida... Más

RM

ver canal
Imagen: La IA Ezra Flash ha recibido la autorización 510 (k) de la FDA, lo que permite el despliegue de la primera resonancia magnética del cuerpo completo de 30 minutos del mundo (Fotografía cortesía de Ezra)

Primera resonancia magnética de cuerpo completo de 30 minutos del mundo ofrece diagnóstico de cáncer rápido, preciso y asequible

Una solución de inteligencia artificial (IA) de vanguardia mejora la calidad de la imagen de RM, allanando el camino para una reducción en el tiempo de escaneo y, en consecuencia, el costo... Más

Ultrasonido

ver canal
Imagen: Unir microburbujas a los macrófagos puede crear imágenes de seguimiento sensibles y de alta resolución útiles para el diagnóstico de enfermedades (Fotografía cortesía del Instituto de Tecnología de Georgia)

Ultrasonido puede obtener imágenes de células inmunitarias mejoradas con microburbujas para diagnosticar cáncer en etapa temprana

Los macrófagos, un tipo de glóbulo blanco, protegen el cuerpo humano al rodear y consumir partículas extrañas como bacterias, virus y células muertas. En particular,... Más

Medicina Nuclear

ver canal
Imagen: Un nuevo método de imagen ofrece potencial para diagnosticar, estadificar y tratar múltiples tipos de cáncer (Fotografía cortesía de SNMMI)

Nuevo método de imagen es superior para diagnósticar múltiples tipos de cáncer

Los fibroblastos asociados con el cáncer juegan un papel importante en el desarrollo, la migración y la progresión del tumor. Un subconjunto de estos fibroblastos expresa la proteína... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: Se espera que el mercado global de soluciones de imágenes médicas habilitadas para IA alcance los 1.836 millones de dólares en 2032 (Fotografía cortesía de Freepik)

Mercado mundial de soluciones de imágenes médicas habilitadas por IA impulsado por necesidad de detección temprana de enfermedades

El mercado de soluciones de imágenes médicas habilitadas por IA se encuentra actualmente en sus etapas de desarrollo, siguiendo el importante papel de las herramientas basadas en IA para... Más
Copyright © 2000-2023 Globetech Media. All rights reserved.